首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enabling 5G indoor services for residential environment using VLC technology
Institution:Next-generation and Wireless Communications Laboratory, Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey;School of Communication and Information Engineering, Chongqing Univ. of Posts and Telecommun, Chongqing 400065, China
Abstract:Visible light communication (VLC) has emerged as a viable complement to traditional radio frequency (RF) based systems and as an enabler for high data rate communications for beyond-5G (B5G) indoor communication systems. In particular, the emergence of new B5G-based applications with quality of service (QoS) requirements and massive connectivity has recently led to research on the required service-levels and the development of improved physical (PHY) layer methods. As part of recent VLC standards development activities, the IEEE has formed the 802.11bb “Light Communications (LC) for Wireless Local Area Networking” standardization group. This paper investigates the network requirements of 5G indoor services such as virtual reality (VR) and high-definition (HD) video for residential environments using VLC. In this paper, we consider such typical VLC scenarios with additional impairments such as light-emitting diode (LED) nonlinearity and imperfect channel feedback, and propose hyperparameter-free mitigation techniques using Reproducing Kernel Hilbert Space (RKHS) methods. In this context, we also propose using a direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM)-based adaptive VLC transmission method that uses precomputed bit error rate (BER) expressions for these RKHS-based detection methods and performs adaptive BER-based modulation-order switching. Simulations of channel impulse responses (CIRs) show that the adaptive transmission method provides significantly improved error rate performance, which makes it promising for high data rate VLC-based 5G indoor services.
Keywords:Visible light communication (VLC)  Ray-tracing  Adaptive transmission  5G services
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号