首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Overview of channel models for underwater wireless communication networks
Institution:Broadband Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
Abstract:Acoustic communication in Underwater Wireless Communication Networks (UWCNs) has several challenges due to the presence of fading, multipath and refractive properties of the sound channel which necessitate the development of precise underwater channel models. Some existing channel models are simplified and do not consider multipath or multipath fading. In this paper, a detailed survey on ray-theory-based multipath Rayleigh underwater channel models for underwater wireless communication is presented and the research challenges for an efficient communication in this environment are outlined. These channel models are valid for shallow or deep water. They are based on acoustic propagation physics which captures different propagation paths of sound in the underwater and consider all the effects of shadow zones, multipath fading, operating frequency, depth and water temperature. The propagation characteristics are shown through mathematical analysis. Transmission losses between transceivers are investigated through simulations. Further simulations are carried out to study the bit error rate effects and the maximum internode distances for different networks and depths considering a 16-QAM modulation scheme with OFDM as the multicarrier transmission technique. The effect of weather season and the variability of ocean environmental factors such as water temperature on the communication performance are also shown. The mathematical analysis and simulations highlight important considerations for the deployment and operation of UWCNs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号