首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomistic Simulation of Curvature Driven Grain Boundary Migration
Authors:M Upmanyu  RW Smith  DJ Srolovitz
Institution:(1) Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA
Abstract:We present two dimensional molecular dynamics simulations of grain boundary migration using the half-loop bicrystal geometry in the experiments of Shvindlerman et al. We examine the dependence of steady-state grain boundary migration rate on grain boundary curvature by varying the half-loop width at constant temperature. The results confirm the classical result derived by absolute reaction rate theory that grain boundary velocity is proportional to the curvature. We then measure the grain boundary migration rate for fixed half-loop width at varying temperatures. Analysis of this data establishes an Arrhenius relation between the grain boundary mobility and temperature, allowing us to extract the activation energy for grain boundary migration. Since grain boundaries have an excess volume, curvature driven grain boundary migration increases the density of the system during the simulations. In simulations performed at constant pressure, this leads to vacancy generation during the boundary migration, making the whole migration process jerky.
Keywords:grain boundary migration  molecular dynamics  intrinsic mobility  grain boundary curvature  absolute reaction rate theory  point defect generation  anisotropic mobility
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号