首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Abnormal odd-even staggering behavior around 132Sn studied by density functional theory
Authors:Haoqiang Shi  Xiao-Bao Wang  Guo-Xiang Dong  Hualei Wang
Institution:1. School of Science, Huzhou University, Huzhou 313000, China2. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract:In this work, we have performed Skyrme density functional theory (DFT) calculations of nuclei around 132Sn to study whether the abnormal odd-even staggering (OES) behavior of binding energies around N = 82 can be reproduced. With the Skyrme forces SLy4 and SkM*, we tested the volume- and surface-type pairing forces and also the intermediate between these two pairing forces, in the Hartree-Fock-Bogoliubov (HFB) approximation with or without the Lipkin-Nogami (LN) approximation or particle number projection after the convergence of HFBLN (PLN). The Universal Nuclear Energy Density Function (UNEDF) parameter sets are also used. The trend of the neutron OES against the neutron number or proton number does not change significantly by tuning the density dependence of the pairing force. Moreover, for the pairing force that is favored more at the nuclear surface, a larger mass OES is obtained, and vice versa. It appears that the combination of volume and surface pairing can give better agreement with the data. In the studies of the OES, a larger ratio of surface to volume pairing might be favored. Additionally, in most cases, the OES given by the HFBLN approximation agrees more closely with the experimental data. We found that both the Skyrme and pairing forces can influence the OES behavior. The mass OES calculated by the UNEDF DFT is explicitly smaller than the experimental one. The UNEDF1 and UNEDF2 forces can reproduce the experimental trend of the abnormal OES around 132Sn. The neutron OES of the tin isotopes given by the SkM* force agrees more closely with the experimental one than that given by the SLy4 force in most cases. Both SLy4 and SkM* DFT have difficulties in reproducing the abnormal OES around 132Sn. Using the PLN method, the systematics of OES are improved for several combinations of Skyrme and pairing forces.
Keywords:odd-even mass staggering  pairing correlation  density functional theory
点击此处可从《中国物理C(英文版)》浏览原始摘要信息
点击此处可从《中国物理C(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号