首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A 3D-CMOS compatible silicon photo-sensor with a large vertical photosensitive area
Authors:Iman Sabri Alirezaei  Jörg Vierhaus  Edmund P Burte
Institution:1.Electrical Engineering and Information Technology, Institute of Micro and Sensor Systems(IMOS),Otto-von-Guericke University of Magdeburg,Magdeburg,Germany
Abstract:This paper introduces design and simulation of a three-dimensional complementary metal–oxide–semiconductor CMOS compatible photo-sensor based on a silicon substrate. In the structure of photo-sensor, a vertical n+/p junction as a photosensitive area is formed on one side of a U-groove, and perpendicular to a lateral n-i-p structure on top-side of the silicon surface. This configuration enables a direct butt-coupling of a fiber-optic to the photosensitive area, which is a privilege for many remote monitoring applications. The device analysis is carried out by a two-dimensional simulation using SILVACO TCAD simulator. The thickness of the photo-sensitive area is investigated by considering the figures of merit for the two different thicknesses of 30 and 50 µm. The simulated results (according to the parameters defined for the Si substrate) show a very low dark current of 70 and 100 (fA/μm) for the 30 and 50 µm thicknesses, respectively. In addition, a high photo-current to dark current ratio of ~3000 is achieved under an intensity of 2 mW/cm2 at 633 nm wavelength, according to the wavelength of red He–Ne laser. The sensor demonstrates a responsivity of 0.33 A/W corresponding to 65% external quantum efficiency and a ?3 dB frequency response of 0.2 GHz under a small signal of 2 mW/cm2 at 633 nm wavelength for 10 V reverse bias.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号