首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Charge transfer between ZnO crystals and dye layers
Authors:B Broich  G Heiland
Institution:2. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule Aachen, D-5100 Aachen, Germany
Abstract:The interaction between crystal and adsorbed dye molecules has been studied under well defined conditions by measurements of field effect and spectrally sensitized photoconductivity. The (101̄0) surfaces of n-type ZnO crystals (band gap 3.3 eV) are cleaned in ultrahigh vacuum. A pretreatment with atomic hydrogen produces an accumulation layer. Merocyanine (polymethine) dye molecules are deposited by sublimation in the same vacuum (coverage (1–2000) × 1014 cm?2. Optical excitation of the dye causes a sensitized photoconductivity in the ZnO crystal close to the surface. The spectra distribution resembles the absorption spectrum of the dye with a maximum at 2.3 eV. An electric field applied perpendicular to the dye covered surface induces charge carriers in the crystal and changes the surface conductivity (field effect). Additional excitation of the dye by light causes a slow relaxation of the field-induced change of surface conductivity. This relaxation is observed for both signs of the field. Furthermore a memory of the dye covered crystals has been found. It can be programmed by field and light, read out via the surface conductivity and quenched by light. A phenomenological model for relaxation and memory is refined by kinetic equations and by considerations about charge transport within the dye layer. The observations can only be explained by a charge transfer between crystal and dye operating in both directions. From these results the following conclusion is drawn for the mechanism of spectrally sensitized photoconductivity of the present system: An electron transfer between dye molecules and crystal represents the decisive step rather than an energy transfer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号