首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and electronic properties of V, Nb and Ta nanoclusters by tight-binding molecular dynamics simulations
Authors:ChE Lekka  DA Papaconstantopoulos
Institution:a Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
b Department of Computational and Data Sciences, George Mason University, Fairfax, VA, USA
Abstract:We present tight-binding molecular dynamics (TBMD) calculations on V, Nb and Ta nanoclusters with N = 15, 65, 175 and 369 atoms. We found that rhombic dodecahedra are energetically favoured over rhombic hexahedra and icosahedra, with V forming the most compact cluster with the gyration radius increasing with the cluster size. In addition, from the calculated electronic density of states we found that the cluster size plays an important role in the HOMO-LUMO gap and that an increase in cluster size results in enhancement of the electronic density around the Fermi level. Furthermore, we found that the small clusters (N = 15, 65) exhibit energy gap that persists even at 900 K. These findings originate from charge transfer occurring between the inner and outer cluster atoms; interestingly, we found that in the small N = 15, 65 clusters electronic charge accumulates at each surface site at the expense of the inner cluster atoms, while in the larger clusters, N = 175 and 369, charge is gathered on the central particles of the cluster, suggesting different sub-surface character of the clusters. These findings are in agreement with available experimental and theoretical data and promise to offer important information for creating nanostructured materials with improved properties suitable for multiple technological applications.
Keywords:Small clusters and nanoparticles  Electronic structure calculations  Molecular dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号