首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding
Authors:Xiu-Bo Liu  Shi-Hong Shi  Ge-Yan Fu
Institution:a School of Mechanical & Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021, PR China
b School of Materials & Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan West Road, Zhengzhou 450007, PR China
Abstract:As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF2 in the preparation of precursor NiCr-Cr3C2-CaF2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process.
Keywords:Microstructure  Laser processing  Composite coating  Ni-P electroless plating  γ-TiAl intermetallic alloy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号