首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization
Authors:Han-Bang Dong  Zhuan Yi  Jun-Li Shi
Institution:Institute of Polymer Science and Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), Zhejiang University, Hangzhou 310027, PR China
Abstract:Hydrophilic poly((poly(ethylene glycol) methyl ether methacrylate) (P(PEGMA)) and poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surfaces via surface-initiated atom transfer radical polymerization (ATRP). Prior to ATRP, chloromethylation of PSF was performed beforehand and the obtained CMPSF was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPSF membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. 1H NMR was employed to confirm the structure of CMPSF. The grafting yield of P(PEGMA) and PGMA was determined by weight gain measurement. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) and PGMA chains. Water contact angle measurements indicated that the introduction of P(PEGMA) and PGMA graft chains promoted remarkably the surface hydrophilicity of PSF membranes. The effects of P(PEGMA) and PGMA immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that P(PEGMA) and PGMA grafts brought higher pure water flux, improved hydrophilic surface and better anti-protein absorption ability to PSF membranes after modification. And evidently, macromonomer P(PEGMA) brought much better properties to the PSF membranes than PGMA macromonomer.
Keywords:Polysulfone  Hydrophilicity  Protein absorption resistance  Surface-initiated ATRP
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号