首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solar cell fabrication using edge-defined film-fed growth (EFG) silicon wafers
Authors:Jinsu Yoo
Institution:Photovoltaic Research Center, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343, South Korea
Abstract:The insufficient supply of polysilicon is limiting the growth of the segment of the photovoltaic industry using silicon materials. Because it is grown directly in the form of ribbon from a silicon melt, edge-defined film-fed growth (EFG) silicon ribbon is a promising alternative for cutting down wafer costs by reducing the polysilicon consumption and eliminating kerf loss. In this paper, we will discuss the various properties that can be achieved with for low cost and high-efficiency EFG silicon ribbon solar cell fabrication. Boron-doped p-type EFG ribbon silicon wafers with resistivities of 2-4 Ω cm and a size of 125 mm × 125 mm were used. The major fabrication steps we studied were mixed acid (HF, HNO3, DI water) texturing, phosphorus diffusion with POCl3, thermal oxide growth for surface passivation, laser process for edge isolation, and PECVD of SiNx:H for surface passivation and antireflection coating. By optimizing the processing steps, we achieved a conversion efficiency, open circuit voltage, short circuit current, and fill factor as high as 14.5%, 584 mV, 32.1 mA/cm2, and 77%, respectively.
Keywords:Solar cell  Edge-defined film-fed growth  Passivation  Antireflection coating  Texturing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号