首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of the role of oxygen in NO reduction by C2H4 on the surface of stepped Pt(3 3 2)
Authors:Yuhai Hu  Keith Griffiths  
Institution:

aDepartment of Chemistry, The University of Western Ontario, London N6A 5B7, Canada

Abstract:The influence of pre-dosed oxygen on NO–C2H4 interactions on the surface of stepped Pt(3 3 2) has been investigated using Fourier transform infrared reflection–absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). The presence of oxygen significantly suppresses the adsorption of NO on the steps of Pt(3 3 2), leading to a very specific adsorption state for NO molecules when oxygen–NO co-adlayers are annealed to 350 K (assigned as atop NO on step edges). An oxygen-exchange reaction also takes place between these two kinds of adsorbed molecules, but there appears to be no other chemical reaction, which can result in the formation of higher-valence NOx.

C2H4 molecules which are post-dosed at 250 K to adlayers consisting of 18O and NO do not have strong interactions with either the NO or the 18O atoms. In particular, interactions which may result in the formation of new surface species that are intermediates for N2 production appear to be absent. However, C2H4 is oxidized to C18O2 by 18O atoms at higher annealing temperature. This reaction scavenges surface 18O atoms quickly, and the adsorption of NO molecules on step sites is therefore quickly restored. As a consequence, NO dissociation on steps proceeds very effectively, giving rise to N2 desorption which closely resembles that following only NO exposure on a clean Pt(3 3 2), both in peak intensity and desorption temperature. It is concluded that the presence of 18O2 in the selective catalytic reduction (SCR) of NO with C2H4 on the surface of Pt(3 3 2) does not play a role of activating reactants.

Keywords:NO  Platinum  C2H4  deNOx  Hydrocarbon  Selective catalytic reduction  Oxygen
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号