首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetohydrodynamic Electroosmotic Flow with Patterned Charged Surface and Modulated Wettability in a Parallel Plate Microchannel*
Authors:Na Hao  Yong-Jun Jian
Institution:School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China
Abstract:This paper investigates the magnetohydrodynamic (MHD) electroosmotic flow (EOF) of Newtonian fluid through a zeta potential modulated parallel plate microchannel with patterned hydrodynamic slippage. The driven mechanism of the flow originates from the Lorentz force generated by the interaction of externally imposed lateral electric field $E_y$ and vertical magnetic field $B_z$ and electric field force produced by an externally applied electric field $E_x$. It is assumed that the wall zeta potential and the slip length are periodic functions of axial coordinate $x$, an analytical solution of the stream function is achieved by utilizing the method of separation of variables and perturbation expansion. The pictures of streamlines are plotted and the vortex configurations produced in flow field due to patterned wall potential and hydrodynamic slippage are discussed. Based on the stream function, the velocity field and volume flow rate are obtained, which are greatly depend on some dimensionless parameters, such as slip length $l_s$, electrokinetic width $\lambda$, the amplitude $\delta$ of the patterned slip length, the amplitude $m$ of the modulated zeta potential and Hartmann number $Ha$. The variations of velocity and volume flow rate with these dimensionless parameters are discussed in details. These theoretical results may provide some guidance effectively operating micropump in practical nanofluidic applications.
Keywords:magnetohydrodynamic (MHD) flow  electroosmotic flow (EOF)  modulated hydrodynamic slippage  patterned charged surface  
本文献已被 万方数据 等数据库收录!
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号