首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties
Abstract:This study used a numerical model to investigate the combustion process in a premixed iso-octane homogeneous charge compression ignition (HCCI) engine. The engine was a supercharged Cummins C engine operated under HCCI conditions. The CHEMKIN code was implemented into an updated KIVA-3V code so that the combustion could be modelled using detailed chemistry in the context of engine CFD simulations. The model was able to accurately simulate the ignition timing and combustion phasing for various engine conditions. The unburned hydrocarbon emissions were also well predicted while the carbon monoxide emissions were under predicted. Model results showed that the majority of unburned hydrocarbon is located in the piston-ring crevice region and the carbon monoxide resides in the vicinity of the cylinder walls. A sensitivity study of the computational grid resolution indicated that the combustion predictions were relatively insensitive to the grid density. However, the piston-ring crevice region needed to be simulated with high resolution to obtain accurate emissions predictions. The model results also indicated that HCCI combustion and emissions are very sensitive to the initial mixture temperature. The computations also show that the carbon monoxide emissions prediction can be significantly improved by modifying a key oxidation reaction rate constant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号