首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Understanding finite size effects in quasi-long-range orders for exactly solvable chain models
Authors:Sisi Tan  Siew Ann Cheong
Institution:Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Abstract:In this paper, we investigate how much of the numerical artefacts introduced by finite system size and choice of boundary conditions can be removed by finite size scaling, for strongly correlated systems with quasi-long-range order. Starting from the exact ground-state wave functions of hardcore bosons and spinless fermions with infinite nearest-neighbor repulsion on finite periodic chains and finite open chains, we compute the two-point, density-density, and pair-pair correlation functions, and fit these to various asymptotic power laws. Comparing the finite-periodic-chain and finite-open-chain correlations with their infinite-chain counterparts, we find reasonable agreement among them for the power-law amplitudes and exponents, but poor agreement for the phase shifts. More importantly, for chain lengths on the order of 100, we find our finite-open-chain calculation overestimates some infinite-chain exponents (as did a recent density-matrix renormalization-group (DMRG) calculation on finite smooth chains), whereas our finite-periodic-chain calculation underestimates these exponents. We attribute this systematic difference to the different choice of boundary conditions. Eventually, both finite-chain exponents approach the infinite-chain limit: by a chain length of 1000 for periodic chains, and >2000 for open chains. There is, however, a misleading apparent finite size scaling convergence at shorter chain lengths, for both our finite-chain exponents, as well as the finite-smooth-chain exponents. Implications of this observation are discussed.
Keywords:Finite size effects  Exact solution  Hardcore bosons  Spinless fermions  Boundary conditions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号