首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure
Institution:State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
Abstract:A core–shell-type of meso-SiO2@Fe3O4 microsphere was synthesized via an ultrasonic-assisted surfactant-templating process using solvothermal synthesized Fe3O4 as core, tetraethoxysilane (TEOS) as silica source, and cetyltrimethyl ammonium bromide (CTAB) as templates. The samples were characterized by FT-IR, XRD, TEM, N2 adsorption–desorption technology, and vibrating sample magnetometer (VSM). The results show that as-prepared meso-SiO2@Fe3O4(E) and meso-SiO2@Fe3O4(C) microspheres, treated by acetone extraction and high temperature calcination, respectively, still maintain uniform core–shell structure with desirable mesoporous silica shell. Therein, the meso-SiO2@Fe3O4(E) microspheres possess a distinct pore size distribution in 1.8–3.0 nm with large specific surface area (468.6 m2/g) and pore volume (0.35 cm3/g). Noteworthily, the coating period of this ultrasonic-assisted method (40 min) is much shorter than that of the conventional method (12–24 h). The morphology of microspheres and the mesoporous structure of silica shell are significantly influenced by initial concentration of CTAB (CCTAB), ultrasonic irradiation power (P) and ultrasonic irradiation time (t). The acceleration roles of ultrasonic irradiation take effect during the whole coating process of mesoporous silica shell, including hydrolysis-condensation process of TEOS, co-assembly of hydrolyzed precursors and CTAB, and deposition of silica oligomers. In addition, the use of ultrasonic irradiation is favorable for improving the homogeneity of silica shell and the monodispersity of meso-SiO2@Fe3O4 microspheres.
Keywords:Ultrasonic  Ultra-rapid  Core–shell structure  Magnetic  Mesoporous silica
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号