首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of extracellular matrix rigidity on sonoporation facilitated by targeted microbubbles: Bubble attachment,bubble dynamics,and cell membrane permeabilization
Institution:1. Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China;2. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;3. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:In this study, we investigated the effects of extracellular matrix rigidity, an important physical property of microenvironments regulating cell morphology and functions, on sonoporation facilitated by targeted microbubbles, highlighting the role of microbubbles. We conducted mechanistic studies at the cellular level on physiologically relevant soft and rigid substrates. By developing a unique imaging strategy, we first resolved details of the 3D attachment configurations between targeted microbubbles and cell membrane. High-speed video microscopy then unveiled bubble dynamics driven by a single ultrasound pulse. Finally, we evaluated the cell membrane permeabilization using a small molecule model drug. Our results demonstrate that: (1) stronger targeted microbubble attachment was formed for cells cultured on the rigid substrate, while six different attachment configurations were revealed in total; (2) more violent bubble oscillation was observed for cells cultured on the rigid substrate, while one third of bubbles attached to cells on the soft substrate exhibited deformation shortly after ultrasound was turned off; (3) higher acoustic pressure was needed to permeabilize the cell membrane for cells on the soft substrate, while under the same ultrasound condition, acoustically-activated microbubbles generated larger pores as compared to cells cultured on the soft substrate. The current findings provide new insights to understand the underlying mechanisms of sonoporation in a physiologically relevant context and may be useful for the clinical translation of sonoporation.
Keywords:Targeted microbubbles  Ultrasound  Extracellular matrix rigidity  Sonoporation  Bubble dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号