首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Renormalization-group analysis for the transition to chaos in Hamiltonian systems
Institution:1. Department of Physics, University of Calicut, Kerala, India;2. Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy;3. CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy;1. Department of Chemistry, Clarkson University, Potsdam, NY, USA;2. Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Molecular Pharmacology and Chemistry Program, New York, NY;3. Department of Mechanical Engineering, Tufts University, Medford, MA, USA;4. Department of Biomedical Engineering, Tufts University, Medford, MA, USA;5. Department of Physics and Astronomy, Tufts University, Medford, MA, USA
Abstract:We study the stability of Hamiltonian systems in classical mechanics with two degrees of freedom by renormalization-group methods. One of the key mechanisms of the transition to chaos is the break-up of invariant tori, which plays an essential role in the large scale and long-term behavior. The aim is to determine the threshold of break-up of invariant tori and its mechanism. The idea is to construct a renormalization transformation as a canonical change of coordinates, which deals with the dominant resonances leading to qualitative changes in the dynamics. Numerical results show that this transformation is an efficient tool for the determination of the threshold of the break-up of invariant tori for Hamiltonian systems with two degrees of freedom. The analysis of this transformation indicates that the break-up of invariant tori is a universal mechanism. The properties of invariant tori are described by the renormalization flow. A trivial attractive set of the renormalization transformation characterizes the Hamiltonians that have a smooth invariant torus. The set of Hamiltonians that have a non-smooth invariant torus is a fractal surface. This critical surface is the stable manifold of a single strange set encompassing all irrational frequencies. This hyperbolic strange set characterizes the Hamiltonians that have an invariant torus at the threshold of the break-up. From the critical strange set, one can deduce the critical properties of the tori (self-similarity, universality classes).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号