首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetic resonance imaging in laboratory petrophysical core analysis
Authors:J Mitchell  TC Chandrasekera  DJ Holland  LF Gladden  EJ Fordham
Institution:1. Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom;2. Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom
Abstract:Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2T2) relaxation time–the industry-standard metric in well-logging–at the laboratory-scale. These T2T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating wettability. The history of MRI in petrophysics is reviewed and future directions considered, including advanced data processing techniques such as compressed sensing reconstruction and Bayesian inference analysis of under-sampled data. Although this review focuses on rock core analysis, the techniques described are applicable in a wider context to porous media in general, such as cements, soils, ceramics, and catalytic materials.
Keywords:MRI  Petrophysics  Core analysis  Heterogeneity mapping  Oil recovery  Capillary pressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号