首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of bonded and non-bonded B/N codoping of graphene on its stability,interaction energy,electronic structure,and power factor
Institution:1. Division of Computational Nanoscience, Physics Department, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq;2. Computer Engineering Department, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Region, Iraq;3. Chemistry Department, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq;4. Department of Mechanical Engineering, National United University, 1, Lienda, Miaoli 36003, Taiwan;5. Reykjavik University, School of Science and Engineering, Menntavegur 1, IS-101 Reykjavik, Iceland;6. Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
Abstract:We model boron and nitrogen doped/codoped monolayer graphene to study its stability, interaction energy, electronic and thermal properties using density functional theory. It is found that a doped graphene sheet with non-bonded B or N atoms induces an attractive interaction and thus opens up the bandgap. Consequently, the power factor is enhanced. Additionally, bonded B or N atoms in doped graphene generate a repulsive interaction leading to a diminished bandgap, and thus a decreased power factor. We emphasis that enhancement of the power factor is not very sensitive to the concentration of the boron and nitrogen atoms, but it is more sensitive to the positions of the B or N atoms in ortho, meta, and para positions of the hexagonal structure of graphene. In the B and N codoped graphene, the non-bonded dopant atoms have a weak attractive interaction and interaction leading to a small bandgap, while bonded doping atoms cause a strong attractive interaction and a large bandgap. As a result, the power factor of the graphene with non-bonded doping atoms is reduced while it is enhanced for graphene with bonded doping atoms.
Keywords:Energy harvesting  Thermal transport  Graphene  Density functional theory  Electronic structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号