首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-equilibrium effects in chaperone-assisted translocation of a stiff polymer
Authors:Rouhollah Haji Abdolvahab
Institution:Physics Department, Iran University of Science and Technology (IUST), 16846-13114, Tehran, Iran
Abstract:Chaperone-assisted biopolymer translocation is the main model proposed for translocation in vivo. A dynamical Monte Carlo method is used to simulate the translocation of a stiff homopolymer through a nanopore driven by chaperones. Chaperones are proteins that bind to the polymer near the wall and prevent its backsliding through Cis side. The important parameters include binding energy, size and the local concentration of the chaperones. The profile of these local concentrations, build up the chaperones distribution. Here we investigate the effects of binding energy, size and the exponential distribution of chaperones in their equilibration in each step of the polymer translocation needed for stable translocation time. The simulation results show that in case of chaperones with the size of a monomer (λ=1) and/or positive effective binding energy and/or uniform distribution, the chaperones binding equilibration rate/frequency is less than 5 times per monomer. However, in some special cases in the exponential distribution of chaperones with size λ>1 and negative effective binding energy the equilibration rate will diverge to more than 20 times per monomer. We show that this non-equilibrium effect results in supper diffusion, seen before. Moreover, we confirm the equilibration process theoretically.
Keywords:Polymer translocation  First passage time  Chaperone distribution  Binding energy  Nanopore  Non-equilibrium
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号