首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study
Authors:Knutsson Linda  Ståhlberg Freddy  Wirestam Ronnie
Institution:Department of Medical Radiation Physics, Lund University Hospital, Lund, Sweden. linda.knutsson@radfys.lu.se
Abstract:Several studies have indicated that deconvolution based on singular value decomposition (SVD) is a robust concept for retrieval of cerebral blood flow in dynamic susceptibility contrast (DSC) MRI. However, the behavior of the technique under typical experimental conditions has not been completely investigated. In the present study, cerebral perfusion was simulated using different temporal resolutions, different signal-to-noise ratios (S/Ns), different shapes of the arterial input function (AIF), different signal drops, and different cut-off levels in the SVD deconvolution. Using Zierler's area-to-height relationship in combination with the central volume theorem, calculations of regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and regional mean transit time (rMTT) were accomplished, based on simulated DSC-MRI signal curves corresponding to artery, gray matter (GM), white matter (WM), and ischemic tissue. Gaussian noise was added to the noise-free signal curves to generate different S/Ns. We studied image time intervals of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 s, as well as different degrees of signal decrease. The singular-value threshold in the SVD procedure and the shape of the AIF were also varied. Increased rCBF was seen when noise was added, especially for rCBF in WM at the larger image time intervals. The rCBF showed large standard deviations using a low threshold value. A prolonged time interval led to a lower absolute value of rCBF both in GM and WM, and a low/broad AIF also underestimated the rCBF. When a larger maximal signal decrease was assumed, smaller standard deviations were observed. No systematic change of the average rCBV was observed with increasing noise or with increasing image time interval. At S/N = 40, a low cut-off value resulted in an rCBF that was closer to the true value. Furthermore, at low S/N it was difficult to differentiate ischemic tissue from WM.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号