首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A particle level-set based Eulerian method for multi-material detonation simulation of high explosive and metal confinements
Authors:Ki-Hong Kim  Jack J Yoh
Institution:School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, South Korea
Abstract:The multi-material numerical simulation for energetic system that consists of a high explosive charge and an inert confinement is carried out with an accurate and state-of-the-art Eulerian method. An explosively driven copper tube results in a state of extreme temperature and pressure, coupled to a high speed structural response of metal due to a detonating high explosive (HE). We use the experimentally tuned Ignition and Growth (or JWL++) rate equation for the HE while the elasto-plastic response of inert is modeled by the Mie–Gruneisen equation of state (EOS) and the Johnson–Cook strength model. A new particle level-set based reactive Ghost Fluid Method (GFM) that imposes exact boundary conditions at the material’s interface according to physical restraints is developed to simulate the multi-material detonation problem. Our calculations reproduce the experimental data of both unconfined and confined rate stick problems, suggesting that the method is suitable for detonation simulation of energetic systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号