首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of temperature on collision induced intersystem crossing in the reaction of CH2 with H2
Authors:Mark A Blitz  Namil Choi  Tams Kovcs  Paul W Seakins  Michael J Pilling
Institution:aDepartment of Chemistry, University of Leeds, Leeds LS2 9JT, UK
Abstract:Laser flash photolysis of ketene at 308 nm, coupled with H atom vacuum ultraviolet laser induced fluorescence, was used to determine the branching ratio for the CH3 + H channel (1a) in the reaction of CH21A1 (1CH2) with H2, over the temperature range 300–500 K. This reaction channel competes with collision induced intersystem crossing (CIISC) to form triplet methylene, CH23B1 (3CH2) (channel 1b). The branching ratio for H formation, k1a/k1, was determined by measuring the relative H atom yield in three time resolved measurements of H: (i) in ketene, H2 mixtures, where H is exclusively formed by reaction 1a, (ii) in ketene, H2, NO mixtures (NO] H2]), where H is formed at short times by 1a and at longer times by 3CH2 + NO, following 1b, and (iii) in ketene, He, NO mixtures (NO] He]), where H is exclusively formed from 3CH2 + NO, following deactivation of singlet to triplet methylene by He. k1a/k1 was found to increase from 0.85 at 300 K to unity at 500 K, with the yield of CIISC decreasing from 0.15 to zero. This is the first measurement of the temperature dependence of the rate coefficient for CIISC in a reactive system. The rate coefficient for CIISC with an inert gas increases with T. It has been suggested that the fractional yield of CIISC will increase with temperature in reactive systems, thus reducing the rate coefficient for reaction at high temperature, with significant consequences for combustion systems. The present experiments demonstrate that this is not the case for reaction with H2 and implies a different CIISC mechanism for reactive vs inert collision partners.
Keywords:Methylene  Hydrogen  Branching ratio
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号