首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaporation rates of droplet arrays in turbulent reacting flows
Authors:MRG Zoby  S Navarro-Martinez  A Kronenburg  AJ Marquis
Institution:aDepartment of Mechanical Engineering, Imperial College, London SW7 2AZ, UK;bInstitut für Technische Verbrennung, University of Stuttgart, Stuttgart, Germany
Abstract:Studies of regularly ordered droplet arrays facilitate the analysis of local effects on evaporation rates. This work investigates, using Direct Numerical Simulations (DNS), the effects of droplet density and flow conditions on evaporation of kerosene droplets in inert and reactive convective environments. A novel model, coupling a mass conservative Level Set approach with the Ghost Fluid method, is used. The rates obtained from the DNS are compared to two evaporation models based on heat and mass transfer numbers commonly used for RANS methods and Large Eddy Simulations (LES). The results show that predictions of evaporation rates of dense sprays using these models has a limited success. The use of the 1/3-rule to calculate mixture properties results in underpredictions of the evaporation rates by around 20% to 50% in most of the cases studied. The models can only predict the DNS results accurately with errors lower than 2%, if the properties in the evaporation rate models are based on properties in the near field around the droplet. Further studies on the effects of turbulence on the evaporation process showed no evident correlation between the evaporation rates and the subgrid kinetic energy relating the effects of turbulence to vapour dispersion away from the droplet surface.
Keywords:Evaporation  Droplets  Combustion  Turbulence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号