首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theory of thermally activated ionization and dissociation of bound states
Authors:Zaccone A  Terentjev E M
Institution:Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Abstract:Calculating the microscopic dissociation rate of a bound state, such as a classical diatomic molecule, has been difficult so far. The problem was that standard theories require an energy barrier over which the bound particle (or state) escapes into the preferred low-energy state. This is not the case when the long-range repulsion responsible for the barrier is either absent or screened (as in Cooper pairs, plasmas, or biomolecular complexes). We solve this classical problem by accounting for entropic driving forces at the microscopic level. The theory predicts dissociation rates for arbitrary potentials and is successfully tested on the example of plasma, where it yields an estimate of ionization in the core of the Sun in excellent agreement with experiments. In biology, the new theory accounts for crowding in receptor-ligand kinetics and protein aggregation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号