首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optical properties of a new IR converter for laser beam analysis
Authors:C Schneeberg  A Kaemling  D Wandke  C Kaemling  M Kuchenbecker  W Viöl
Institution:1. University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, G?ttingen, 37085, Germany
2. CINOGY GmbH, Max-N?der-Str. 15, Duderstadt, 37115, Germany
Abstract:This work presents the temporal and spacial resolution of a new infrared (IR) converter based on thermal radiation emission. Using this converter, it is possible to measure the intensity distribution of laser beams with a wavelength between 1 and 20 μm. For this purpose, the laser radiation (for example, 10.6 μm) is converted into a wavelength coverage of 800–1100 nm. In the actual converter thin metal foils provide the basis of this method. The metal foils are heated to a temperature of 600–800 K. The emitted radiation of the foils defers into the near-infrared (NIR) area, thus enabling detection by camera systems based on silicate. Additional heat input of the laser results in a local temperature increase, and then the increase in radiation intensity can be measured. Typical thicknesses of converter metal foils are <5μm. Foil materials with a low thermal conductivity, good absorption of the measured laser beams, and a high melting temperature are particularly suitable. These parameters are well shown by using stainless steels, such as INOX (stainless steel 1.4310 CrNi steel). Using this material, it is possible to gain a maximum spatial resolution of 250 μm and a temporal resolution of 12.5 Hz, by a measurement range from 1 to 100 W/cm2. The maximum measured intensity is 125 W/cm2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号