首页 | 本学科首页   官方微博 | 高级检索  
     检索      

FeN3掺杂扶手椅型石墨烯纳米条带的极强电流极化和微分负导效应
引用本文:吴颖超,饶家睿,李小飞.FeN3掺杂扶手椅型石墨烯纳米条带的极强电流极化和微分负导效应[J].化学物理学报,2018,31(6):756-760.
作者姓名:吴颖超  饶家睿  李小飞
作者单位:电子科技大学光电科学与工程学院,成都 610054,电子科技大学光电科学与工程学院,成都 610054,电子科技大学光电科学与工程学院,成都 610054
摘    要:本文运用第一性原理研究了FeN3掺杂扶手椅型和锯齿型石墨烯纳米条带的电子结构和输运性质. 结果表明,FeN3掺杂可导致两种类型的条带的能带结构发生显著变化,导致体系具有稳定的室温铁磁基态. 但是,只有扶手椅型条带具有明显的负微分电导和极强的电流极化效应(接近100%). 这是由于FeN3掺杂引入孤立的两条自旋向下能级,导致极强的电流极化. 同时,它们与自旋向下的不同子能带的耦合强度完全不同,导致体系呈现出负微分电导行为. 结果说明,通过FeN3掺杂扶手椅型石墨烯纳米条带也可用于制备自旋电子学器件.

关 键 词:TM-N-C,电流极化,电子输运,非平衡格林函数
收稿时间:2018/7/28 0:00:00

Strong Current-Polarization and Negative Differential Resistance in FeN3-Embedded Armchair Graphene Nanoribbons
Ying-chao Wu,Jia-rui Rao and Xiao-fei Li.Strong Current-Polarization and Negative Differential Resistance in FeN3-Embedded Armchair Graphene Nanoribbons[J].Chinese Journal of Chemical Physics,2018,31(6):756-760.
Authors:Ying-chao Wu  Jia-rui Rao and Xiao-fei Li
Institution:School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China,School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:Motivated by the recent advances of transition-metal-nitrogen-carbon (TM-N-C) materials in catalysis, we investigate the electronic structure and transport properties of FeN3-embedded armchair and zigzag graphene nanoribbons (FeN3@AGNRs, FeN3@ZGNRs) with different widths. The first-principles results indicate that the FeN3 induces significant changes on the band structures of both ZGNRs and AGNRs, making the resultant systems quite different from the pristine ones and own room-temperature stable ferromagnetic (FM) ground states. While only FeN3@AGNRs possess a significant spin-dependent negative differential resistance (NDR) and a striking current polarization (nearly 100%) behaviors, due to that FeN3 introduces two isolated spin-down states, which contribute current with different performances when they couple with different frontier orbits. It is suggested that by embedding FeN3 complexes, AGNRs can be used to build spin devices in spintronics.
Keywords:
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号