首页 | 本学科首页   官方微博 | 高级检索  
     检索      

费托合成工艺热力学性质的计算化学研究
引用本文:朱泓琨,宋国梁,李振华.费托合成工艺热力学性质的计算化学研究[J].化学物理学报,2019,32(5):586-596.
作者姓名:朱泓琨  宋国梁  李振华
作者单位:复旦大学化学系,上海市分子催化与功能材料重点实验室,上海 200438,复旦大学化学系,上海市分子催化与功能材料重点实验室,上海 200438,复旦大学化学系,上海市分子催化与功能材料重点实验室,上海 200438
摘    要:本文采用高精度的G4方法,全面计算了不同反应条件下费托合成工艺中可能的1287个产物的热力学数据,然后用这些数据得到的热力学量用于分析实际化工生产的热力学和分析费托合成的产物分布.结果表明:降温、加压和增大氢碳比(H_2/CO)时,热力学上可能生成的产物数目增多.在低温、高压和高碳氢比下,很多产物都在热力学上可以生成,其中产物的选择性主要由动力学因素控制.另一方面,升温或者降压可以提高小分子产物的选择性.值得注意的是在降温、加压和增大碳氢比到一定条件时,产物的平衡产率会达到最大值并且不随条件改变而变化,这说明优化条件改变产率是有一定限度的.热力学分析同样对设计和评价费托合成的反应机理有重大意义,其中甲醛的平衡产率很低,可以排除含有甲醛的反应路径.近期有一些采用金属氧化物-分子筛双功能催化剂高选择性获得C_(2-4)烯烃和芳烃的报道,其中有很多可能进入分子筛孔道的中间体,分析结果显示乙烯酮、甲醇和二甲醚是可能的中间体.

关 键 词:费托合成,热力学,G4方法,平衡产率,中间体
收稿时间:2019/3/16 0:00:00

Computational Study on Thermodynamic Properties of Fischer-Tropsch Synthesis Process
Hong-kun Zhu,Guo-liang Song and Zhen-hua Li.Computational Study on Thermodynamic Properties of Fischer-Tropsch Synthesis Process[J].Chinese Journal of Chemical Physics,2019,32(5):586-596.
Authors:Hong-kun Zhu  Guo-liang Song and Zhen-hua Li
Institution:Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China,Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China and Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
Abstract:Using the highly accurate G4 method, we computed the thermodynamic data of 1287 possible reaction products under a wide range of reaction conditions in the Fischer-Tropcsh synthesis (FTS) process. These accurate thermodynamic data provide basic thermodynamic quantities for the actual chemical engineering process and are useful in analyzing product distribution because FTS demonstrates many features of an equilibrium-controlled system. Our results show that the number of thermodynamically allowed products to increase when lowering temperature, raising pressure, and raising H2/CO ratio. At low temperature, high pressure and high H2/CO ratio, many products are thermodynamically allowed and the selectivity of product has to be controlled by kinetic factors. On the other hand, high selectivity of lighter products can be realized in thermodynamics by raising temperature and lowering pressure. We found that the equilibrium product yield will reach a maximum and remain unchanged when lowering temperature, raising pressure, and raising H2/CO ratio to some limits, implying that optimizing reaction conditions has no effect on equilibrium product yields beyond these limits. The thermodynamic analysis is also useful in designing and evaluating FTS reaction mechanisms. We found that reaction pathways through formaldehyde should be discarded because of its extremely low equilibrium yield. Recently, in the FTS process using metal-oxide-zeolite catalysts for the highly selective production of C2-C4 olefins and aromatic hydrocarbons, there are several guesses on the possible reaction intermediates entering the zeolite channel. Our results show that ketene, methanol, and dimethyl ether are three possible reaction intermediates.
Keywords:Fischer-Tropsch synthesis  Thermodynamics  G4 Method  Product distribution  Reaction mechanism
本文献已被 CNKI 等数据库收录!
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号