首页 | 本学科首页   官方微博 | 高级检索  
     检索      

理论研究二氧化碳在有机吸收剂1,3-二苯胍中的氢键相互作用
引用本文:王伊秋,高 菡,李亚静,张 颖,夏 飞.理论研究二氧化碳在有机吸收剂1,3-二苯胍中的氢键相互作用[J].化学物理学报,2022(3):471-480.
作者姓名:王伊秋  高 菡  李亚静  张 颖  夏 飞
作者单位:华东师范大学化学与分子工程学院,上海纽约大学与华东师大联合计算化学中心,上海 200062;复旦大学,上海市分子催化和功能材料重点实验室,物质计算科学教育部重点实验室,上海 200433
摘    要:如今碳捕获和储存技术已得到了迅速发展以减少对环境的二氧化碳排放. 研究发现胺基有机分子溶剂能有效地吸收二氧化碳,并通过氢键和二氧化碳形成的碳酸氢盐相互作用. 最近,实验报道了一种1,3-二苯基胍溶液,在室温条件下能捕获环境中的二氧化碳并将其转化为有价值的化学品. 然而,1,3-二苯基胍分子在溶液状态下如何与二氧化碳相互作用的机理仍不清楚. 在这项工作中,利用分子动力学方法模拟研究了溶液相中1,3-二苯基胍分子与二氧化碳的复杂作用细节. 模拟结果表明,质子化的1,3-二苯基胍分子和碳酸氢根离子倾向通过不同的双氢键模式作用形成稳定的复合物. 精确的密度泛函方法计算表明,这些双氢键复合物在热力学上相当稳定. 本研究有助于理解溶液相中1,3-二苯基胍分子中催化转化二氧化碳的机理.

关 键 词:二氧化碳转化,分子动力学模拟,密度泛函理论,双氢键,1,3-二苯基胍
收稿时间:2022/1/20 0:00:00

Theoretical Study of Hydrogen-Bond Interactions of CO2 in Organic Absorbent 1,3-Diphenylguanidine
Yiqiu Wang,Han Gao,Yajing Li,Igor Ying Zhang,Fei Xia.Theoretical Study of Hydrogen-Bond Interactions of CO2 in Organic Absorbent 1,3-Diphenylguanidine[J].Chinese Journal of Chemical Physics,2022(3):471-480.
Authors:Yiqiu Wang  Han Gao  Yajing Li  Igor Ying Zhang  Fei Xia
Institution:School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China;Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
Abstract:Carbon capture and storage technology have been rapidly developed to reduce the carbon dioxide (CO2) emission into the environment. It has been found that the amine-based organic molecules could absorb CO2 efficiently and form the bicarbonate salts through hydrogen-bond (H-bond) interactions. Recently, the aqueous 1,3-diphenylguanidine (DPG) solution was developed to trap and convert CO2 to valuable chemicals under ambient conditions. However, how the DPG molecules interact with CO2 in an aqueous solution remains unclear. In this work, we perform molecular dynamics simulations to explore the atomistic details of CO2 in the aqueous DPG. The simulated results reveal that the protonated DPGH+ and the bicarbonate anions prefer to form complexes through different H-bond patterns. These double H-bonds are quite stable in thermodynamics, as indicated from the accurate density functional theory calculations. This study is helpful to understand the catalytic mechanism of CO2 conversion in the aqueous DPG.
Keywords:CO2 conversion  Molecular dynamics simulation  Density functional theory calculation  Double H-bond  1  3-diphenylguanidine
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号