首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Mn助剂对K-Co-Mo催化剂结构及CO加氢合成低碳醇性能的影响
引用本文:谢威,姬丽丽,周纪龙,潘海斌,朱俊发,张燚,孙松,鲍骏,高琛.Mn助剂对K-Co-Mo催化剂结构及CO加氢合成低碳醇性能的影响[J].化学物理学报,2016,29(6):671-680.
作者姓名:谢威  姬丽丽  周纪龙  潘海斌  朱俊发  张燚  孙松  鲍骏  高琛
作者单位:中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029,北京化工大学, 有机-无机复合材料国家重点实验室, 北京 100029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029;中国科学技术大学材料科学与工程系, 中国科学院能源转换材料重点实验室, 合肥 230029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029;中国科学技术大学材料科学与工程系, 中国科学院能源转换材料重点实验室, 合肥 230029,中国科学技术大学国家同步辐射实验室, 化学能源材料协同创新中心, 合肥 230029;中国科学技术大学材料科学与工程系, 中国科学院能源转换材料重点实验室, 合肥 230029
摘    要:通过溶胶-凝胶法合成了一系列Mn掺杂K-Co-Mo催化剂,并利用X射线衍射、N2吸脱附、NH3程序升温脱附、原位漫反射红外光谱以及X射线吸收谱等技术对催化剂的结构进行了表征.活性测试结果显示Mn掺杂催化剂比未掺杂催化剂表现更高的合成低碳醇的催化活性,尤其是C2+醇的选择性得到了明显的提高.醇产物分布偏离了ASF分布规律,甲醇的含量显著减少,乙醇成为主要醇产物.表征结果表明Mn助剂的加入增强了Co和Mo之间的相互作用,促进了醇生成活性中心Co-Mo-O物种的生成.显著减少了催化剂强酸性位的数量,促进了弱酸性位的产生,有利于醇产物的生成.助剂的加入有利于催化剂对CO的线性和桥式吸附,促进了醇产物的生成和碳链的增长,提高了催化剂对C2+醇的选择性.

关 键 词:CO加氢  溶胶-凝胶法  Mo基催化剂  Mn助剂  低碳醇合成
收稿时间:4/8/2016 12:00:00 AM
修稿时间:2016/5/10 0:00:00

Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation
Wei Xie,Li-li Ji,Ji-long Zhou,Hai-bin Pan,Jun-fa Zhu,Yi Zhang,Song Sun,Jun Bao and Chen Gao.Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation[J].Chinese Journal of Chemical Physics,2016,29(6):671-680.
Authors:Wei Xie  Li-li Ji  Ji-long Zhou  Hai-bin Pan  Jun-fa Zhu  Yi Zhang  Song Sun  Jun Bao and Chen Gao
Institution:National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China,National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China,National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China,National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China,National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China,National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China;CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China,National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China;CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China and National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230029, China;CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract:A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperatureprogrammed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts exhibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products deviated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.
Keywords:CO hydrogenation  Sol-gel method  Mo-based catalyst  Mn promoter  Higher alcohols synthesis
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号