首页 | 本学科首页   官方微博 | 高级检索  
     检索      

锐钛矿和金红石二氧化钛中光生载流子的超快动力学:电声相互作用研究
引用本文:连 曼,汪宇晨,彭师平,赵 仪.锐钛矿和金红石二氧化钛中光生载流子的超快动力学:电声相互作用研究[J].化学物理学报,2022(2):270-280.
作者姓名:连 曼  汪宇晨  彭师平  赵 仪
作者单位:厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建省理论与计算化学重点实验室,厦门 361005
摘    要:本文结合玻尔兹曼输运方程和电声散射速率计算研究锐钛矿和金红石二氧化钛中光生载流子的超快动力学过程. 其中,动力学模拟所需的结构参数均通过第一性原理计算获得. 结果表明,由于存在强Fr?hlich型电声耦合,纵光学声子模对两个晶相的能量弛豫过程均有十分显著的影响,但是两个晶相的弛豫机理却表现出明显的差异. 对于单条导带内的弛豫过程,锐钛矿和金红石的能量弛豫时间分别为24.0 fs和11.8 fs,前者约为后者的二倍. 这一差异来源于两个晶相中不同的电子扩散分布以及不同的声学模散射贡献. 对于涉及多条导带的弛豫过程,预测的锐钛矿和金红石的总体弛豫时间分别为47 fs和57 fs,其相对大小与单条导带的情况相反. 分析表明金红石相弛豫较慢是因为存在多个速率控制步骤. 这些发现为调控电子动力学以及设计高效的二氧化钛器件提供了有价值的信息.

关 键 词:二氧化钛,电声相互作用,超快动力学,玻尔兹曼输运方程
收稿时间:2021/11/30 0:00:00

Photo-Induced Ultrafast Electron Dynamics in Anatase and Rutile TiO2: Effects of Electron-Phonon Interaction
Man Lian,Yu-Chen Wang,Shiping Peng,Yi Zhao.Photo-Induced Ultrafast Electron Dynamics in Anatase and Rutile TiO2: Effects of Electron-Phonon Interaction[J].Chinese Journal of Chemical Physics,2022(2):270-280.
Authors:Man Lian  Yu-Chen Wang  Shiping Peng  Yi Zhao
Institution:State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Abstract:The photo-induced ultrafast electron dynamics in both anatase and rutile TiO2 are investigated by using the Boltzmann transport equation with the explicit incorporation of electron-phonon scattering rates. All structural parameters required for dynamic simulations are obtained from ab initio calculations. The results show that although the longitudinal optical modes significantly affect the electron energy relaxation dynamics in both phases due to strong Fr?hlich-type couplings, the detailed relaxation mechanisms have obvious differences. In the case of a single band, the energy relaxation time in anatase is 24.0 fs, twice longer than 11.8 fs in rutile. This discrepancy is explained by the different diffusion distributions over the electronic Bloch states and different scattering contributions from acoustic modes in the two phases. As for the multiple-band situation involving the lowest six conduction bands, the predicted overall relaxation times are about 47 fs and 57 fs in anatase and rutile, respectively, very different from the case of the single band. The slower relaxation in rutile is attributed to the existence of multiple rate-controlled steps during the dynamic process. The present findings may be helpful to control the electron dynamics for designing efficient TiO2-based devices.
Keywords:Titanium dioxide  Electron-phonon interaction  Ultrafast dynamics  Boltzmann transport equation
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号