首页 | 本学科首页   官方微博 | 高级检索  
     检索      

介电泳技术制备具有分子荧光增强效应的电极间纳米间隙结构
引用本文:孟秋实,蔡洪冰,林珂,朱三娥,廖源,张杨,王晓平,董振超.介电泳技术制备具有分子荧光增强效应的电极间纳米间隙结构[J].化学物理学报,2016,29(3):279-283.
作者姓名:孟秋实  蔡洪冰  林珂  朱三娥  廖源  张杨  王晓平  董振超
作者单位:中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室, 中国科学技术大学化学与材料科学学院, 合肥 230026
基金项目:This work is supported by the National Basic Research Program of China, the National Natural Science Foundation of China, and Chinese Academy of Sciences.
摘    要:将单个核壳结构纳米颗粒放置在金属纳米电极之间制备了纳米尺度间隙结构.利用介电泳技术,本文可控地将蛋白质层包裹的SiO2@Au核壳结构纳米颗粒定位放置在被荧光分子覆盖的纳米电极之间,从而得到了夹在纳米颗粒和金属纳米电极之间的纳米间隙结构.初步的光致发光测量表明,制备的纳米间隙结构可以有效地增强间隙中分子的荧光信号.这一结果为后续实现基于纳米间隙电极的电致分子荧光奠定了基础.

关 键 词:纳米间隙  纳米电极  介电泳  核壳结构纳米颗粒  荧光增强
收稿时间:2015/10/30 0:00:00
修稿时间:2015/11/27 0:00:00

Fabricating Nanogaps between Nanoelectrodes using Dielectrophoresis Technique for Molecular Fluorescence Enhancement
Qiu-shi Meng,Hong-bing Cai,Ke Lin,San-e Zhu,Yuan Liao,Yang Zhang,Xiao-ping Wang and Zhen-chao Dong.Fabricating Nanogaps between Nanoelectrodes using Dielectrophoresis Technique for Molecular Fluorescence Enhancement[J].Chinese Journal of Chemical Physics,2016,29(3):279-283.
Authors:Qiu-shi Meng  Hong-bing Cai  Ke Lin  San-e Zhu  Yuan Liao  Yang Zhang  Xiao-ping Wang and Zhen-chao Dong
Institution:Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:Here we demonstrate the fabrication of nanometer-sized gaps by assembling single coreshell nanoparticles between metallic nanoelectrodes. Protein coated SiO2@Au coreshell nanoparticles are synthesized and positioned between uorescent molecules-covered electrodes in a controllable way using dielectrophoretic trapping, forming nanogaps sandwiched between nanoparticle and nanoelectrodes. Preliminary photoluminescence measurements show that enhanced molecular uorescence could be detected from the uorescent molecules inside the nanogaps. These results pave the way for realizing electrically driven molecular uorescence based on nanogap electrodes.
Keywords:Nanogap  Nanoelectrode  Dielectrophoresis  Coreshell nanoparticle  Fluorescence enhancement
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号