首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A minimal basis semi-ab initio approach to the band structures of semiconductors
Authors:Ming-Zhu Huang  WY Ching
Institution:Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110, U.S.A.
Abstract:The band structures of 32 of the most important semiconductor crystals are calculated using an efficient, minimal basis, orthogonalized LCAO method. These include the diamond structure of C, Si, Ge, α-Sn; the zinc blende structure of β-SiC, BN, BP, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, β-ZnS, ZnSe, ZnTe, CdS, CdTe; the wurtzite structure of AlN, GaN, ZnO, α-ZnS, CdS, CdSe; the sodium chloride structure of CdO, GeTe, SnTe and trigonal Se and Te. The calculations, which involve diagonalizations of small size matrix equations yield results having the following characteristics: (1) satisfactory valence bands and lower conduction bands and bulk densities of states; (2) the gap sizes and the locations of valence band maximum and conduction band minimum in agreement with experiment; (3) reasonable values of fractional ionicity and electron and hole effective masses. These are achieved by fine-tuning the exchange parameters in the construction of the potentials. Application of this approach to the study of the electronic structures of disordered and other complex semiconductor systems is also discussed.
Keywords:minimal basis  semi-ab initio  band structures  semiconductors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号