首页 | 本学科首页   官方微博 | 高级检索  
     检索      

锶原子光晶格钟自旋极化谱线的探测
引用本文:郭阳,尹默娟,徐琴芳,王叶兵,卢本全,任洁,赵芳婧,常宏.锶原子光晶格钟自旋极化谱线的探测[J].物理学报,2018,67(7):70601-070601.
作者姓名:郭阳  尹默娟  徐琴芳  王叶兵  卢本全  任洁  赵芳婧  常宏
作者单位:1. 中国科学院国家授时中心时间频率基准重点实验室, 西安 710600; 2. 中国科学院大学天文与空间科学学院, 北京 100049
基金项目:国家自然科学基金(批准号:11474282,61775220)、中国科学院战略性先导科技专项(B类)(批准号:XDB21030700)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004)资助的课题.
摘    要:87Sr原子存在核自旋,在磁场作用下原子能级会分裂成不同塞曼子能级.通过光抽运对原子进行自旋极化,其自旋极化谱线的探测为锶光钟系统的闭环锁定提供精确的频率参考.本文对~(87)Sr原子钟跃迁能级5s~2~1S_0→5s5p~3P_0中的m_F=+9/2和m_F=-9/2的塞曼磁子能级自旋极化谱线进行了探测.经过一级宽带冷却和二级窄线宽冷却与俘获后,锶冷原子温度为3.9μK,原子数目为3.5×10~6.利用邻近"魔术波长"的813.426 nm半导体激光光源实现水平方向的一维光晶格装载.采用归一化探测方法用线宽为Hz量级的698 nm钟激光对~1S_0→~3P_0偶极禁戒跃迁进行探测,在150 ms的探测时间下获得线宽为6.7 Hz的钟跃迁简并谱.在磁光阱竖直方向施加一个300 mGs的偏置磁场获得塞曼分裂谱,并通过689 nm的圆偏振自旋极化光进行光抽运,最终在探测时间为150 ms时,获得左右旋极化谱线线宽分别为6.2 Hz和6.8 Hz.

关 键 词:锶原子光晶格钟  钟跃迁探测  自旋极化谱
收稿时间:2017-12-28

Interrogation of spin polarized clock transition in strontium optical lattice clock
Guo Yang,Yin Mo-Juan,Xu Qin-Fang,Wang Ye-Bing,Lu Ben-Quan,Ren Jie,Zhao Fang-Jing,Chang Hong.Interrogation of spin polarized clock transition in strontium optical lattice clock[J].Acta Physica Sinica,2018,67(7):70601-070601.
Authors:Guo Yang  Yin Mo-Juan  Xu Qin-Fang  Wang Ye-Bing  Lu Ben-Quan  Ren Jie  Zhao Fang-Jing  Chang Hong
Institution:1. Key Laboratory of Time and Frequency Primary Standards of Chinese Academy of Sciences, National Time Service Center, Xi'an 710600, China; 2. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:We demonstrate a spin-polarized clock transition spectrum of the 87Sr optical lattice clock. The clock transition 5s2 1S0→5s5p 3P0 of isotope 87Sr has a hyperfine structure due to non-zero nuclear spin, inducing ten π-polarized transitions from each individual mF state under the condition of a bias magnetic field along the probing polarization axis. In this experiment, atoms are driven to a certain mF state by a circular-polarization pump light to maximize the atomic population, which is beneficial to the stability and uncertainty evaluation of the optical lattice clock. After two stages cooling and trapping, about 3.5×106 atoms are trapped in the red magneto-optical trap with a temperature of 3.9 μK. A grating-feedback external cavity diode laser with a tapered amplifier is used to build the optical lattice with a “magic-wavelength” of 813.426 nm. Both waists of the counter-propagating lattice beam along the horizontal direction are overlapped to form a one-dimensional (1D) optical lattice. The lifetime of the atoms trapped in the 1D optical lattice is 1600 ms. The clock laser at 698 nm is a grating-feedback diode laser, which is locked to an ultra-low expansion cavity by the Pound-Drever-Hall technique to stabilize the frequency and phase. As a result, the linewidth of clock laser is narrowed to Hz level. By the normalized shelving method, we obtain a resolved sideband spectrum of 87Sr 5s2 1S0→5s5p 3P0 transition. According to the spectrum, the lattice temperature along the longitudinal direction is approximately 4.2 μK. After that a linewidth of 6.7 Hz of the degenerate clock transition is obtained at a probing time of 150 ms by utilizing a three-dimensional (3D) bias magnetic field, which is used to eliminate the stray magnetic fields. Then a small bias magnetic field of 300 mGs is applied along the polarization axis of the lattice light to achieve the spectrum of Zeeman magnetic sublevels of the clock transition. Furthermore, the mF=+9/2 and mF=-9/2 magnetic sublevels are picked to be respectively pumped by the σ+-polarized and σ--polarized light at 689 nm, a variable liquid crystal wave plate is employed to switch on both polarizations. Finally, the spin polarized clock transition spectrum is obtained at the interrogating pulse of 150 ms, and the linewidths of the mF=+9/2, mF=-9/2 magnetic sublevel transitions are 6.8 Hz and 6.2 Hz respectively.
Keywords:strontium optical lattice clock  observation of clock transition  the spin-polarized spectrum
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号