首页 | 本学科首页   官方微博 | 高级检索  
     检索      

双连续型乳液凝胶(Bijel)的研究进展
引用本文:李涛,陈科,Jure Dobnikar.双连续型乳液凝胶(Bijel)的研究进展[J].物理学报,2018,67(14):144701-144701.
作者姓名:李涛  陈科  Jure Dobnikar
作者单位:中国科学院物理研究所, 北京凝聚态物理国家研究中心, 软物质物理重点实验室, 北京 100190
基金项目:第62批中国博士后科学基金面上资助(批准号:2017M620946)和国家自然科学基金(批准号:11474327)资助的课题.
摘    要:双连续型结构是指同一体系中存在两种连续态,这在刚体中很容易实现,但对于流体却十分困难.要使两种流体同时保持连续态,不仅对它们的相容性、密度、极性等方面要求极高,还需要稳定剂来牢牢稳定住液-液界面.最早的双连续型凝胶是在对高聚物进行研究时发现的,后来英国爱丁堡大学软物质课题组进行了一系列研究,最终在低分子量液体体系中实现了重大突破,制备出本文所要讨论的bicontinuous interfacially jammed emulsion gel(Bijel).这种结构可以被称作"双连续型乳液凝胶",它兼有乳液(emulsion)和凝胶(gel)的物理性质,独特的双连续结构使它拥有更为广阔的应用空间.本文简短地回顾了Bijel的研发过程,总结近年来的研究进展,指出它在工业应用中受到的限制,并对室温下通过直接搅拌制备Bijel的方法做重点介绍.

关 键 词:双连续型乳液凝胶  液体界面  胶体颗粒  自组装
收稿时间:2018-03-01

Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)
Li Tao,Chen Ke,Jure Dobnikar.Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)[J].Acta Physica Sinica,2018,67(14):144701-144701.
Authors:Li Tao  Chen Ke  Jure Dobnikar
Institution:Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:In 2005, a bicontinuous arrangement of domains was explored by large-scale computer simulations. In a binary liquid host, the behaviors of neutrally wetting particles were simulated following an instantaneous quench into the demixed region. As the two mutually immiscible liquids phase separate, particles can be swept up by the freshly created interface and jam together as the domains coarsen, forming a particle-stabilized interface between two continuous liquid phases. This type of material is known as “bicontinuous interfacially jammed emulsion gel” (Bijel), and has been demonstrated experimentally using water-lutidine mixture in 2007. It is believed that Bijels have rich potential applications in diverse areas including healthcare, food, energy and reaction engineering due to their unique structural, mechanical and transport properties.
As a new class of soft materials, Bijels have received great attention in recent years, and have been developed by using different liquids and non-spherical particles. However, a wide gap remains between the experimental systems and the industrial applications. This short review will critically assess current progress of Bijels and relevant studies including the attempts and challenges to use them in industry; the creation of Bijels by direct mixing at room temperature will be highlighted specifically.
Chapter 1 presents the theoretical background. For binary-liquid systems containing dispersed colloidal particles, arrested composites can be created via the stabilization of convoluted fluid-fluid interfaces. Based on this, different morphologies of Pickering emulsions would be obtained. Chapter 2 first focuses on some complex emulsions, including Janus droplets and multiple emulsions, and then induces the bi-continuous structures. Such structures were originally formed through spinodal decomposition, which catches the phase demixing of an initially single-phase liquid mixture containing a colloidal suspension, and normally needs to control the temperature carefully. In Chapter 3, the mechanism of spinodal decomposition is presented. Chapter 4 shows some recent research progress of Bijels, including the studies with different liquid systems, nonspherical particles and some chemical property measurements. This chapter also summarizes the challenges in using Bijels in industry. In Chapter 5, a new method of creating Bijels by direct mixing at room temperature is demonstrated. This method simply needs high viscosity liquids, nanoparticles and a surfactant; it not only bridges the gap between conventional Bijel production (see Chapter 3) and that of particle stabilized bicontinuous structures using bulk polymers, but also bypasses the careful particle modification and phase separation steps for conventional Bijels. In Chapter 6 some conclusions are drawn and a general outlook is also provided.
Keywords:Bijel  liquid-liquid interfaces  colloids  self-assembly
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号