首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟
引用本文:赵曰峰,王超,王伟宗,李莉,孙昊,邵涛,潘杰.大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟[J].物理学报,2018,67(8):85202-085202.
作者姓名:赵曰峰  王超  王伟宗  李莉  孙昊  邵涛  潘杰
作者单位:1. 山东师范大学物理与电子科学学院, 济南 250014; 2. 中国科学院电工研究所, 北京 100190; 3. 比利时安特卫普大学化学学院, 安特卫普 2610, 比利时; 4. 国家电网济南供电公司, 济南 250012
基金项目:国家自然科学基金(批准号:51637010,51707111)和山东省自然科学基金(批准号:ZR2015AQ008)资助的课题.
摘    要:甲烷针-板放电与重油加氢耦合形成甲烷转化重油加氢,可实现重油高效加氢并增产高附加值低碳烯烃,有实践应用前景和科学研究意义.建立二维流体模型,对大气压甲烷针-板放电等离子体进行数值模拟,得到电场强度、电子温度和粒子密度的空间与轴向分布,总结反应产额并提炼生成各种带电和中性粒子的关键路径.模拟结果表明,CH_3~+和CH_4~+密度与电场强度和电子温度的轴向演化接近且密切相关;CH_5~+和C_2H_5~+密度沿轴向先增大后减小;CH_3与H密度的空间和轴向分布几乎相同;CH_2,C_2H_4与C_2H_5的粒子密度分布在靠近阴极的区域内明显不同而在正柱区内较为相像;电子与CH_4发生电子碰撞电离生成的CH_3~+和CH_4~+,CH_3~+和CH_4~+分别与CH_4发生分子碰撞解离生成C_2H_5~+和CH_5~+;电子与CH_4间的电子碰撞分解是生成CH_3,CH_2,CH和H的主导反应;CH_2与CH_4和电子与C_2H_4发生的反应分别是生成C_2H_4和C_2H_2的关键路径;电子与CH_4间的电子碰撞分解反应和CH_2与CH_4发生的反应的产额各占H_2总产额的52.15%和47.85%.

关 键 词:大气压放电等离子体  甲烷放电等离子体  针-板放电  流体模型
收稿时间:2017-10-10

Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure
Zhao Yue-Feng,Wang Chao,Wang Wei-Zong,Li Li,Sun Hao,Shao Tao,Pan Jie.Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure[J].Acta Physica Sinica,2018,67(8):85202-085202.
Authors:Zhao Yue-Feng  Wang Chao  Wang Wei-Zong  Li Li  Sun Hao  Shao Tao  Pan Jie
Institution:1. School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; 3. Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium; 4. State Grid Jinan Power Supply Company, Jinan 250012, China
Abstract:Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H2 respectively.
Keywords:discharge plasma at atmospheric pressure  methane discharge plasma  needle-plane discharge  fluid model
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号