首页 | 本学科首页   官方微博 | 高级检索  
     检索      

VO2金属-绝缘体相变机理的研究进展
引用本文:罗明海,徐马记,黄其伟,李派,何云斌.VO2金属-绝缘体相变机理的研究进展[J].物理学报,2016,65(4):47201-047201.
作者姓名:罗明海  徐马记  黄其伟  李派  何云斌
作者单位:湖北大学材料科学与工程学院, 有机化工新材料湖北省协同创新中心, 功能材料绿色制备与应用教育部重点实验室, 武汉 430062
基金项目:国家自然科学基金(批准号:51572073,61274010,51202062,11574074)资助的课题~~
摘    要:VO2是一种热致相变金属氧化物. 在341 K附近, VO2发生由低温绝缘体相到高温金属相的可逆转变, 同时伴随着光学、电学和磁学等性质的可逆突变, 这种独特的性质使得VO2在光电开关材料、智能玻璃、存储介质材料等领域有着广阔的应用前景. 因此, VO2金属-绝缘体可逆相变一直是人们的研究热点, 但其相变机理至今未有定论. 首先, 简要概述了VO2相变时晶体结构和能带结构的变化情况: 从晶体结构来讲, 相变前后VO2从低温时的单斜相VO2(M)转变为高温稳定的金红石相VO2(R), 在一定条件下此过程也可能伴随着亚稳态单斜相VO2(B)与四方相VO2(A)的产生; 从能带结构来看, VO2处于低温单斜相时, 其d//能带和π*能带之间存在一个禁带, 带宽约为0.7 eV, 费米能级恰好落在禁带之间, 表现出绝缘性, 而在高温金红石相时, 其费米能级落在π*能带与d//能带之间的重叠部分, 因此表现出金属导电性. 其次, 着重总结了VO2相变物理机理的研究现状. 主要包括: 电子关联驱动相变、结构驱动相变以及电子关联和结构共同驱动相变的3种理论体系以及支撑这些理论体系的实验结果. 文献报道争论的焦点在于, VO2是否是Mott绝缘体以及结构相变与MIT相变是否精确同时发生. 最后, 展望了VO2材料研究的发展方向.

关 键 词:二氧化钒  MIT相变  Mott相变  Peierls相变
收稿时间:2015-11-02

Research progress of metal-insulator phase transition mechanism in VO2
Luo Ming-Hai;Xu Ma-Ji;Huang Qi-Wei;Li Pai;He Yun-Bin.Research progress of metal-insulator phase transition mechanism in VO2[J].Acta Physica Sinica,2016,65(4):47201-047201.
Authors:Luo Ming-Hai;Xu Ma-Ji;Huang Qi-Wei;Li Pai;He Yun-Bin
Institution:Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
Abstract:VO2 is a metal oxide that has a thermally-induced phase-transition. In the vicinity of 341 K, VO2 undergoes a reversible transition from the high-temperature metal phase to the low-temperature insulator phase. Associated with the metal-insulator transition (MIT), there are drastic changes in its optical, electrical and magnetic characteristics. These make VO2 an attractive material for various applications, such as optical and/or electrical switches, smart glass, storage media, etc. Thus, the reversible metal-insulator phase transition in VO2 has long been a research hotspot. However, the metal-insulator transition mechanism in VO2 has been a subject of debate for several decades, and yet there is no unified explanation. This paper first describes changes of the crystal structure and the energy band structure during VO2 phase transition. With regard to the crystal structure, VO2 transforms from the low-temperature monoclinic phase VO2(M) into the high-temperature stable rutile phase VO2(R), and in some special cases, this phase transition process may also involve a metastable monoclinic VO2(B) phase and a tetragonal VO2(A) phase. In respect of the energy band structure, VO2 undergoes a transition from the low-temperature insulator phase into a high-temperature metal phase. In the band structure of low-temperature monoclinic phase, there is a band gap of about 0.7 eV between d// and π* bands, and the Fermi level falls exactly into the band gap, which makes VO2 electronically insulating. In the band structure of high-temperature rutile phase, the Fermi level falls into the overlapping portion of the π* and d// bands, which makes VO2 electronically metallic. Next, this paper summarizes the current research status of the physical mechanism underlying the VO2 MIT. Three kinds of theoretical perspectives, supported by corresponding experimental results, have been proposed so far, which includes electron-correlation-driven MIT, Peierls-like structure-driven MIT, and MIT driven by the interplay of both electron-correlation and Peierls-like structural phase transition. It is noted that recent reports mostly focus on the controversy–whether VO2 is a Mott insulator, and whether the structural phase transition and the MIT accurately occur simultaneously in VO2. Finally, the paper points out the near-future development direction of the VO2 research.
Keywords:Vanadium dioxide  metal-insulator phase transition  Mott transition  Peierls transition
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号