首页 | 本学科首页   官方微博 | 高级检索  
     检索      

环形狭缝腔阵列光学特性的研究
引用本文:周静,王鸣,倪海彬,马鑫.环形狭缝腔阵列光学特性的研究[J].物理学报,2015,64(22):227301-227301.
作者姓名:周静  王鸣  倪海彬  马鑫
作者单位:南京师范大学物理科学与技术学院, 江苏省光电技术重点实验室, 南京 210023
基金项目:国家自然科学基金(批准号: 61178044)、江苏省高校研究生培养创新工程(批准号: KYLX_0723)和江苏省科技支撑计划(批准号: BE2008138)资助的课题.
摘    要:设计了一种六角密排的二维环形纳米腔阵列结构, 利用时域有限差分算法对该结构的光学特性进行了探究. 仿真结果表明, 在线性偏振光入射时, 环形腔内可以形成多重圆柱形表面等离激元谐振, 谐振波长的个数和大小与环形腔的结构参数相关. 根据透、反射光谱, 电场矢量的模式分布及截面电荷密度的分布, 谐振波长处形成圆柱形表面等离激元, 谐振波长处入射光能量大部分在环形腔内损耗, 此时反射率为极小值, 环形腔内的电场增强效应为极大值(光强增强可达1065倍). 谐振波长与环形腔的结构参数(狭缝内径、狭缝外径、膜厚、环境介质折射率、金属的材质)相关, 通过调节结构参数, 谐振波长在350–2000 nm范围内可调. 通过对比相同结构参数的单个环形腔和环形腔阵列的仿真结果, 周期排布对环形腔内的圆柱形表面等离激元吸收峰位置影响不明显. 该结构反射光谱对入射光电矢量偏振方向不敏感. 谐振波长的可调控性对于表面拉曼增强和表面等离激元共振传感器的设计与优化具有指导性意义, 且应用于折射率传感器时灵敏度可达1850 nm/RIU.

关 键 词:圆柱形表面等离激元谐振  时域有限差分法  环形腔  二维周期性结构
收稿时间:2015-04-25

Finite difference time domain simulation of optical properties of annular cavity arrays
Zhou Jing,Wang Ming,Ni Hai-Bin,Ma Xin.Finite difference time domain simulation of optical properties of annular cavity arrays[J].Acta Physica Sinica,2015,64(22):227301-227301.
Authors:Zhou Jing  Wang Ming  Ni Hai-Bin  Ma Xin
Institution:Key Laboratory on Opto-Electronic Technology of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract:Optical properties of two-dimensional periodic annular cavity arrays in hexagonal packing are investigated by finite difference time domain simulation method in this paper. According to simulated reflectance/transmission spectra, electric field distribution and charge distribution, we confirm that multiple cylindrical surface plasmon resonances, which result in reflectance dips, can be excited in annular cavities by linearly polarized light. Mechanism of the cylindrical surface plasmons is investigated. A coaxial waveguide mode TE11 is excited in the annular cavities and a Fabry-Perot resonance is fulfilled along the depth direction of the annular cavities at the resonance wavelengths. While the number of reflectance dips and wavelengths of these dips in reflectance spectra are dependent on the geometric sizes of the annular cavities, the periodicity and polarization of incident light do not affect their reflectance spectra dramatically. Incident light beams with resonant wavelengths are localized in annular cavities with large electric field increasing and dissipate gradually due to metal loss. Reflectance dips can be tuned from 350 to 2000 nm by adjusting geometric size parameters of the annular cavities, such as outer and inner radii of the annular gaps, gap sizes and metal film thickness values. Reflectance dips shift toward longer wavelength with increasing inner and outer radii of the annular gaps, metal film thickness and with reducing the gap distance. In addition, infiltrate liquids in the annular gaps will result in a shift of the resonance wavelengths, which makes the annular cavities good refractive index sensors. A refractive index sensitivity up to 1850 nm/RIU is demonstrated. The refractive index sensitivities of annular cavities can also be tuned by their geometric sizes. Annular cavities with large electric field enhancement and tunable cylindrical surface plasmons can be used as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers and optical trappers.
Keywords:cylindrical surface plasmons  finite difference time domain  ring cavity  two-dimensional periodical structure
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号