首页 | 本学科首页   官方微博 | 高级检索  
     检索      

以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性
引用本文:武香莲,赵珂,贾海洪,王富青.以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性[J].物理学报,2015,64(23):233301-233301.
作者姓名:武香莲  赵珂  贾海洪  王富青
作者单位:山东师范大学物理与电子科学学院, 济南 250014
基金项目:山东省自然科学基金(批准号: ZR2014AM026)和山东省高等学校科技计划项目(批准号: J14LJ01)资助的课题.
摘    要:理论研究分子结构与双光子吸收性质之间的关系对于指导实验者设计与合成功能分子材料具有重要意义. 在杂化密度泛函水平上, 利用响应函数方法, 计算了一类以二乙烯硫/砜基为中心的新型电荷转移分子的双光子吸收截面, 并在相同计算水平上, 与联苯乙烯类强双光子吸收分子做了比较; 以新型电荷转移分子为基础, 利用异构效应, 设计出了可以增强双光子吸收强度的分子结构. 研究表明, 在可应用波长范围内, 该系列分子表现出较强的双光子吸收响应, 与相似共轭长度的强双光子吸收分子具有相同量级的双光子吸收截面; 二乙烯硫/砜基在分子中心作为吸电子基团可以形成有效的电荷转移分子; 改变咔唑基的连接方式可以有效提高双光子吸收截面. 该研究为实验合成新型双光子吸收分子材料提供了理论依据.

关 键 词:二乙烯硫/砜  双光子吸收  响应函数方法
收稿时间:2015-05-25

Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center
Wu Xiang-Lian,Zhao Ke,Jia Hai-Hong,Wang Fu-Qing.Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center[J].Acta Physica Sinica,2015,64(23):233301-233301.
Authors:Wu Xiang-Lian  Zhao Ke  Jia Hai-Hong  Wang Fu-Qing
Institution:School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract:Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same computational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sections are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a triphenylamine group has the largest cross-section due to its strong donor groups. The divinyl sulfones-based dyes have larger cross-sections than the corresponding sulfides-based ones, because divinyl sulfones have stronger capability to accept electrons and at the same time the torsional angles between benzene rings in sulfones-based molecules are smaller than in the sulfides-based molecules. In the applicable wavelength range, these new dyes exhibit large two-photon absorption cross-sections which have the same order of magnitude as the strong two-photon absorption molecules with similar conjugation length. The largest cross section comes to 1613.3 GM calculated by using 6-31g(d) basis set. Molecular orbitals involved in the strongest two-photon absorption excitations are plotted and the charge transfer process is analyzed at length. The divinyl sulfide and sulfone centers behave as electron withdrawing groups and can form effective charge transfer molecules. On the basis of these new molecules, the structure inducing two-photon absorption enhancement is designed by employing isomerism effect. When the benzene rings of carbazole groups are connected with the molecular center, the planarity and charge transfer intensity are increased, and then the two-photon absorption cross-section can be improved dramatically. This study provides theoretical guidelines for the synthesis of new type of active two-photon absorption materials.
Keywords:divinyl sulfide/sulfone  two-photon absorption  response function method
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号