首页 | 本学科首页   官方微博 | 高级检索  
     检索      

非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量
引用本文:段俊,秦敏,方武,凌六一,胡仁志,卢雪,沈兰兰,王丹,谢品华,刘建国,刘文清.非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量[J].物理学报,2015,64(18):180701-180701.
作者姓名:段俊  秦敏  方武  凌六一  胡仁志  卢雪  沈兰兰  王丹  谢品华  刘建国  刘文清
作者单位:1. 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 合肥 230031; 2. 安徽理工大学电气与信息工程学院, 淮南 232001; 3. 中国科学技术大学环境科学与光电技术学院, 合肥 230026
基金项目:国家自然科学基金 (批准号: 61275151, 41305139)、中国科学院战略性先导科技专项 (B 类) (批准号: XDB05040200, XDB-05010500)、国家高技术研究发展计划(批准号: 2014AA06A508) 和安徽省自然科学基金(批准号: 1408085QD75)资助的课题.
摘    要:介绍了基于紫外发光二极管光源的非相干宽带腔增强吸收光谱技术, 并用于实际大气亚硝酸(HONO)和二氧化氮(NO2)的同时测量. 分析了腔内气体的瑞利散射对测量的影响, 测试了紫外发光二极管光源的稳定性, 使用氦气和氮气的瑞利散射差异性标定了镜片反射率随波长的变化曲线, 在HONO吸收峰(368.2 nm)处镜片反射率约为0.99965. 应用Allan方差统计方法确定出测量光谱最佳采集时间为320 s, 对应的HONO和NO2的探测限(1σ)分别为0.22 ppb 和0.45 ppb. 使用非相干宽带腔增强吸收光谱测量装置对大气HONO和NO2进行了连续三日的实际观测, 将测量得到的HONO浓度变化与差分吸收光谱测量装置的测量结果进行对比, 线性相关系数R2为0.917.

关 键 词:紫外发光二极管  非相干光宽带腔增强吸收光谱  大气亚硝酸  二氧化氮
收稿时间:2015-02-02

Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO
Duan Jun,Qin Min,Fang Wu,Ling Liu-Yi,Hu Ren-Zhi,Lu Xue,Shen Lan-Lan,Wang Dan,Xie Pin-Hua,Liu Jian-Guo,Liu Wen-Qing.Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO[J].Acta Physica Sinica,2015,64(18):180701-180701.
Authors:Duan Jun  Qin Min  Fang Wu  Ling Liu-Yi  Hu Ren-Zhi  Lu Xue  Shen Lan-Lan  Wang Dan  Xie Pin-Hua  Liu Jian-Guo  Liu Wen-Qing
Institution:1. Anhui Institute of Optics and Fine Mechanics, Key Laboratory of Environmental Optics and Technology, Chinese Academy of Sciences, Hefei 230031, China; 2. Institute of Electric and Information Technology, Anhui University of Science and Technology, Huainan 232001, China; 3. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
Abstract:We report the development of an incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) based on an ultraviolet light emitting diode (UV-LED), and the IBBCEAS instrument is used for simultaneously measuring of the atmospheric HONO and NO2. The cavity-enhanced method is characterized by high sensitivity and spatial resolution. The incoherent broadband light is focused into a high-finesse optical cavity, two highly reflecting mirrors form the ends of the cavity, and the light is then trapped between the two highly reflecting mirrors, resulting in long photon residence time and long optical path length. The effects of the Rayleigh scattering of the gases in the cavity and stability of the UV-LED light source were discussed in this paper. The reflectivity of the highly reflecting mirror was calibrated by the difference of Rayleigh scattering of He and N2, and the optimum averaging time of the IBBCEAS instrument was confirmed to be 320 s by the Allan variance analysis. Detection limits (1σ) of 0.22 ppb for HONO and 0.45 ppb for NO2 were achieved with an optimum acquisition time of 320 s. In order to test the accuracy of measured results by the IBBCEAS instrument, concentrations of HONO and NO2 were recorded during about continuous three days by the IBBCEAS instrument and compared with the results obtained by a different optical absorption spectroscopy (DOAS) instrument. The results of HONO show a linear correction factor (R2) of 0.917, in a slope of 0.897 with an offset of 0.13 ppb; NO2 concentration measured by the IBBCEAS instrument accords well with the result obtained by the DOAS instrument, with a linear correlation of R2 = 0.937, in a slope of 0.914 with an offset of-0.17 ppb.
Keywords:UV-LED  IBBCEAS  HONO  NO2
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号