首页 | 本学科首页   官方微博 | 高级检索  
     检索      

光声光谱检测装置中光声池的数值计算及优化
引用本文:程刚,曹渊,刘锟,曹亚南,陈家金,高晓明.光声光谱检测装置中光声池的数值计算及优化[J].物理学报,2019,68(7):74202-074202.
作者姓名:程刚  曹渊  刘锟  曹亚南  陈家金  高晓明
作者单位:1. 安徽理工大学, 深部煤矿采动响应与灾害防控国家重点实验室, 淮南 232001; 2. 中国科学院安徽光学精密机械研究所, 合肥 230031; 3. 中国科学技术大学, 合肥 230031
基金项目:国家重点研发计划(批准号:2017YFC0209700)和国家自然科学基金(批准号:41730103,41575030,41475023)资助的课题.
摘    要:利用光声光谱技术进行痕量气体的检测具有独特的优势,光声池是系统装置中最为重要的核心部件,它决定着整机性能的优劣.以一圆柱形共振型光声池为研究对象,基于声学与吸收光谱学的基本理论,建立了光声池声场激发的数学模型;利用数值模拟方法对光声池空腔结构进行了声学模态仿真,获得了前8阶声学模态值以及声压可视化振型;在考虑热黏性声学损耗的作用下,对光声池进行了热-声耦合多物理场仿真计算;将仿真结果与解析计算和实验结果进行对比,明确了利用数值模拟方法来计算光声池有关指标的可靠性与可行性;针对光声池的优化问题,提出了一种将响应面代理模型与遗传算法相结合的优化算法,在将原光声池中的谐振腔两端形貌更改为喇叭口形的情况下,通过优化算法获得了以光声池品质因数Q及池常数C_(cell)为最大值寻优的Pareto最优解集;选取一组解进行考察,结果表明,代理模型预测值与数值模拟值指标最大误差仅为1.3%,优化后的新型光声池Q较之前增长了48.9%, C_(cell)增长了34.4%.研究方法可为光声光谱中光声池的优化设计提供参考借鉴.

关 键 词:光学  光声光谱  光声池  数值计算
收稿时间:2018-11-23

Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer
Cheng Gang,Cao Yuan,Liu Kun,Cao Ya-Nan,Chen Jia-Jin,Gao Xiao-Ming.Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer[J].Acta Physica Sinica,2019,68(7):74202-074202.
Authors:Cheng Gang  Cao Yuan  Liu Kun  Cao Ya-Nan  Chen Jia-Jin  Gao Xiao-Ming
Institution:1. Anhui University of Science and Technology, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan 232001, China; 2. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 3. University of Science and Technology of China, Hefei 230031, China
Abstract:Photoacoustic spectroscopy (PAS) offers intrinsic attractive features in the detection of trace gases, including ultra-compact size and background-free absolute absorption measurement. The photoacoustic (PA) cell is a key component in the PAS system, which determines the performance of the PAS sensor. In this paper, a cylindrical resonant photoacoustic cell is taken as a research target. Based on the fundamental theory of acoustics and absorption spectrum, a mathematical model of acoustic field excitation in the PA cell is established. The acoustic resonance frequency, quality factor and cell constant of the PA cell are used as three key parameters to describe its performance. By employing advanced computer numerical calculation and finite element simulation technology, we establish a simulation model and impose the excitation load and boundary conditions on the model according to the actual working conditions. Then we calculate and simulate the acoustic modal of the PA cell, and the first eight acoustic modal values of the cavity and the visual vibration model of the acoustic pressure are obtained. With considering the acoustic loss, the thermo-acoustic coupling multi-physical field simulation of photoacoustic cell is carried out. Comparing with analytical calculation and experiment results, the reliability and feasibility of using numerical simulation method to calculate the relevant parameters of photoacoustic cell are demonstrated. In order to obtain a better structure of photoacoustic cell, an optimization algorithm combining response surface proxy model with multi-objective genetic algorithm is proposed. We try to change the shapes of both ends of the resonator in the original photoacoustic cell into the shape of the bell mouth. Take into account the case that the longitudinal acoustic normalization frequency of the PA cell is larger than 1000 Hz, Pareto optimal solution set with the maximum quality factor Q and cell constant Ccell of the PA cell is obtained. The results show that the maximum error between the predicted and simulated values of the proxy model of the PA cell Q and Ccell is only 1.3%. Comparing with the original PA cell, the Q factor and the Ccell of the optimized PA cell are increased by 48.9% and 34.4%, respectively. The performance of the optimized photoacoustic cell is obviously improved. The proposed algorithm of photoacoustic numerical simulation combined with multi-objective optimization design can provide helpful reference for designing the PA cell in PAS sensor development.
Keywords:optics  photoacoustic spectroscopy  photoacoustic cell  numerical calculation
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号