首页 | 本学科首页   官方微博 | 高级检索  
     检索      

利用速度成像技术研究碘乙烷多光子电离解离动力学
引用本文:颜逸辉,刘玉柱,丁鹏飞,尹文怡.利用速度成像技术研究碘乙烷多光子电离解离动力学[J].物理学报,2018,67(20):203301-203301.
作者姓名:颜逸辉  刘玉柱  丁鹏飞  尹文怡
作者单位:1. 南京信息工程大学, 江苏省大气海洋光电探测重点实验室, 南京 210044; 2. 江苏省大气环境与装备技术协同创新中心, 南京 210044
基金项目:国家重点研发计划(批准号:2017YFC0212700)、江苏省教育厅自然科学重大项目(批准号:18KJA140002)和北京大学人工微结构和介观物理国家重点实验室开放课题资助的课题.
摘    要:卤代烷烃会破坏臭氧层,而碘乙烷(C2H5I)是卤代烷烃中重要代表物质之一.采用离子速度成像技术、飞秒激光技术和飞行时间质谱技术,探究了C2H5I的多光子电离解离动力学.通过分析C2H5I在强场作用下多光子电离解离得到的解离通道、碎片的动能、角度分布和各向异性参数等信息来研究碘乙烷离子(C2H5I+)C–I键裂解机理.根据飞行时间质谱实验,C2H5I在飞秒激光脉冲作用下发生多光子电离解离得到的碎片有C2H5+,I+,CH2I+,C2H2+,C2H3+,C2H4+等.与C–I键相关的碎片为C2H5+和I+,解离机制分别对应于C2H5I+→C2H5++I和C2H5I+→C2H5+I+.同时,采用离子速度成像技术研究C2H5I+的C–I键裂解产生的C2H5+和I+的速度影像,得出两者的速度分布和动能分布,分析结果表明C–I键裂解产生C2H5+和I+的过程都存在高能通道和低能通道.进一步分析解离碎片离子的角度分布发现C2H5+解离时各向异性参数接近于0,可能对应于慢速的振动预解离过程.I+在解离时各向异性参数较高,可能源于排斥势能面上的快速解离过程.最后采用密度泛函理论计算了C2H5I分子电离前后构型变化、离子态的能级强度及谐振强度,对C2H5I+的解离机制做了更进一步的分析和讨论.

关 键 词:碘乙烷  光解离  离子速度成像  飞行时间质谱
收稿时间:2018-05-01

Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique
Yan Yi-Hui,Liu Yu-Zhu,Ding Peng-Fei,Yin Wen-Yi.Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique[J].Acta Physica Sinica,2018,67(20):203301-203301.
Authors:Yan Yi-Hui  Liu Yu-Zhu  Ding Peng-Fei  Yin Wen-Yi
Institution:1. Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044, China
Abstract:Halogenated alkanes destroy the ozone layer, and iodoethane is one of the important representative halogenated alkanes. Time-of-flight mass spectrometry and velocity map imaging technique are used for investigating the photoionization dissociation dynamics of iodoethane, induced by 800 nm femtosecond laser. The dissociation mechanisms of iodoethane are obtained and discussed by analyzing the velocity distributions and angular distributions of the fragment ions generated in the dissociation. The measurements by time-of-flight mass spectrometry show that iodoethane cations generates C2H5+, I+, CH2I+, C2H2+, C2H3+ and C2H4+. The fragments related to C–I bond fragmentation are C2H5+ ions and I+ ions, and the dissociation mechanisms are C2H5I+→ C2H5++I and C2H5I+→ C2H5+I+ respectively. Comparison between the configurations before and after ionization shows that the C–I bond length is 0.2220 nm before ionization and turns longer and becomes 0.2329 nm after ionization. This indicates that the C–I bond becomes more unstable after ionization and is more prone to dissociation. Moreover, the velocity map images of C2H5+ and I+ ions are acquired, from which the speed and angular distribution of C2H5+ and I+ are obtained. The analysis of speed distribution of the fragment ions shows that there are two channels, i.e. high energy channel and low energy channel in the dissociation process for producing C2H5+ and I+ ion. The difference between the ratios of the high energy channel and the low energy channel is small, indicating that the high energy channel and the low energy channel of the two dissociation processes are similar. According to the further analysis of the angular distribution of the fragment ions, it is found that the anisotropy parameter of C2H5+ is close to 0 (isotropic), the production channel of which may correspond to the slow vibration predissociation process. The anisotropy parameters of I+ ions are higher, which may be due to the rapid dissociation process on the repulsive potential energy surface. In addition, the density functional theory is used to calculate the configuration change of the iodoethane molecule before and after ionization, the energy level and oscillator strength for the ionic state in order to obtain more insights into the photodissociation dynamics.
Keywords:iodoethane  photodissociation  velocity imaging  time of flight mass spectrometry
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号