首页 | 本学科首页   官方微博 | 高级检索  
     检索      

新型二维压电声子晶体板带隙可调性研究
引用本文:廖涛,孙小伟,宋婷,田俊红,康太凤,孙伟彬.新型二维压电声子晶体板带隙可调性研究[J].物理学报,2018,67(21):214208-214208.
作者姓名:廖涛  孙小伟  宋婷  田俊红  康太凤  孙伟彬
作者单位:兰州交通大学数理学院, 兰州 730070
基金项目:国家自然科学基金(批准号:51562021,11464027)、甘肃省"陇原青年创新人才扶持计划"、兰州交通大学优秀科研团队(批准号:201803)和兰州交通大学"百名青年优秀人才培养计划"资助的课题.
摘    要:设计了一种由涂有硬质材料涂层的柱状压电散射体周期性连接在四个环氧树脂薄板上构成的具有大带宽的新型二维压电声子晶体板,并利用有限元方法计算了该声子晶体板的能带结构、传输损失谱和位移矢量场.研究表明:与二组元材料构成的传统声子晶体板相比,新设计的声子晶体板的第一完全带隙频率更低,并且带宽扩大了5倍;通过在压电体表面上施加不同的电边界条件,可以实现多条完全带隙的主动调控;压电效应对能带结构有很大的影响,并且有利于完全带隙的扩大与形成.基于带隙的可调谐性,分析了可切换路径的压电声子晶体板波导,结果表明可以通过改变电边界条件来限制弹性波能量流.

关 键 词:声子晶体  压电效应  带隙调控  电边界条件  有限元法
收稿时间:2018-04-05

Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab
Liao Tao,Sun Xiao-Wei,Song Ting,Tian Jun-Hong,Kang Tai-Feng,Sun Wei-Bin.Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab[J].Acta Physica Sinica,2018,67(21):214208-214208.
Authors:Liao Tao  Sun Xiao-Wei  Song Ting  Tian Jun-Hong  Kang Tai-Feng  Sun Wei-Bin
Institution:School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
Abstract:One of the outstanding challenges in phononic crystal development is the ability to achieve bandgap tunability in a low frequency range. The introduction of piezoelectric materials into phononic crystals is an attractive technique for actively controlling the bandgaps, which is reliable, economical and light in weight. Phononic crystal possesses an artificial periodic composite structure whose elastic constant, density and sound velocity change periodically. When the elastic wave passes through a phononic crystal, special dispersion curve is formed due to the interaction among periodically arranged materials. In order to study the tunability of phononic crystal bandgap, we propose a novel two-dimensional piezoelectric phononic crystal structure possessing a wider complete bandgap, which is composed of piezoelectric materials with hard coatings periodically connected by four thin bars. The dispersion relation, transmission spectrum and displacement field are studied by using the finite element method in combination with the Bloch theorem. Numerical results show that the frequency of the first complete bandgap of the new designed phononic crystal slab is lower and the band width is enlarged by a factor of 5 compared with the band width of the traditional binary phononic crystal. Instead of changing the geometry or orientation of the phononic crystal units or inclusions, electrical boundary conditions are used to actively control the frequency bandgap. The boundary condition for electrical open circuit and short circuit are considered in this paper. With different electrical boundary conditions imposed on the surfaces of the piezoelectric inclusions, multiple complete bandgaps can be controlled actively, which means that the new designed phononic crystal structure can adapt to the vibration and noise reduction requirements under different vibration environments. The effect of piezoelectric effect on the band structure is investigated as well. The piezoelectric effect has a great influence on the band structure, with the increase of the piezoelectric constant, a part of bands move to high-frequency and the other part of the bands are kept at the original position, which means that the piezoelectric effect is of benefit to the opening of the complete bandgap. Furthermore, according to the tunability of the bandgap, the switchable piezoelectric phononic crystal slab waveguide is analyzed. Calculation shows that the electrical boundary defects can result in defect bands existing in the complete band gap, and the elastic wave energy flows can be limited by changing the applied electrical boundary conditions. This investigation is conducive to controlling the bandgaps and also reveals potential applications in designing the sensing system and different piezoelectric devices.
Keywords:phononic crystals  piezoelectric effect  bandgap control  electrical boundary conditions  finite element method
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号