首页 | 本学科首页   官方微博 | 高级检索  
     检索      

中性原子量子计算研究进展
引用本文:许鹏,何晓东,刘敏,王谨,詹明生.中性原子量子计算研究进展[J].物理学报,2019,68(3):30305-030305.
作者姓名:许鹏  何晓东  刘敏  王谨  詹明生
作者单位:1. 中国科学院武汉物理与数学研究所, 波谱与原子分子物理国家重点实验室, 武汉 430071; 2. 中国科学院冷原子物理中心, 武汉 430071
基金项目:国家重点研发计划(批准号:2016YFA0302800,2017YFA0304501)、中国科学院先导专项(批准号:XDB21010100)和国家自然科学基金(批准号:11674361,11774389)资助的课题.
摘    要:相互作用可控、相干时间较长的中性单原子体系具备在1 mm2的面积上提供成千上万个量子比特的规模化集成的优势,是进行量子模拟、实现量子计算的有力候选者.近几年中性单原子体系在实验上取得了快速的发展,完成了包括50个单原子的确定性装载、二维和三维阵列中单个原子的寻址和操控、量子比特相干时间的延长、基于里德伯态的两比特量子门的实现和原子态的高效读出等,这些工作极大地推动了该体系在量子模拟和量子计算方面的应用.本文综述了该体系在量子计算方面的研究进展,并介绍了我们在其中所做的两个贡献:一是实现了"魔幻强度光阱",克服了光阱中原子退相干的首要因素,将原子相干时间提高了百倍,使得相干时间与比特操作时间的比值高达105;二是利用异核原子共振频率的差异建立了低串扰的异核单原子体系,并利用里德伯阻塞效应首次实现了异核两原子的量子受控非门和量子纠缠,将量子计算的实验研究拓展至异核领域.最后,分析了中性单原子体系在量子模拟和量子计算方面进一步发展面临的挑战与瓶颈.

关 键 词:里德伯态  中性单原子  量子纠缠  相干时间
收稿时间:2018-12-04

Experimental progress of quantum computation based on trapped single neutral atoms
Xu Peng,He Xiao-Dong,Liu Min,Wang Jin,Zhan Ming-Sheng.Experimental progress of quantum computation based on trapped single neutral atoms[J].Acta Physica Sinica,2019,68(3):30305-030305.
Authors:Xu Peng  He Xiao-Dong  Liu Min  Wang Jin  Zhan Ming-Sheng
Institution:1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract:As an important candidate for quantum simulation and quantum computation, a microscopic array of single atoms confined in optical dipole traps is advantageous in controlled interaction, long coherence time, and scalability of providing thousands of qubits in a small footprint of less than 1 mm2. Recently, several breakthroughs have greatly advanced the applications of neutral atom system in quantum simulation and quantum computation, such as atom-by-atom assembling of defect-free arbitrary atomic arrays, single qubit addressing and manipulating in two-dimensional and three-dimensional arrays, extending coherence time of atomic qubits, controlled-NOT (C-NOT) gate based on Rydberg interactions, high fidelity readout, etc. In this paper, the experimental progress of quantum computation based on trapped single neutral atoms is reviewed, along with two contributions done by single atom group in Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences. First, a magic-intensity trapping technique is developed and used to mitigate the detrimental decoherence effects which are induced by light shift and substantially enhance the coherence time to 225 ms which is 100 times as large as our previous coherence time thus amplifying the ratio between coherence time and single qubit operation time to 105. Second, the difference in resonant frequency between the two atoms of different isotopes is used to avoid crosstalking between individually addressing and manipulating nearby atoms. Based on this heteronuclear single atom system, the heteronuclear C-NOT quantum gate and entanglement of an Rb-85 atom and an Rb-87 atom are demonstrated via Rydberg blockade for the first time. These results will trigger the quests for new protocols and schemes to use the double species for quantum computation with neutral atoms. In the end, the challenge and outlook for further developing the neutral atom system in quantum simulation and quantum computation are also reviewed.
Keywords:Rydberg state  single neutral atom  quantum entanglement  coherence time
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号