首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三维各向同性谐振子的几何动量分布
引用本文:刘全慧,张梦男,肖世发,寻大毛.三维各向同性谐振子的几何动量分布[J].物理学报,2019,68(1):10301-010301.
作者姓名:刘全慧  张梦男  肖世发  寻大毛
作者单位:1. 湖南大学物理与微电子科学学院, 理论物理研究所, 长沙 410082;2. 岭南师范学院物理科学与技术学院, 湛江 524048;3. 江西科技师范大学通信与电子学院, 南昌 330013
基金项目:国家自然科学基金(批准号:11675051)资助的课题.
摘    要:尽管几何动量最初的引入是为了描述超面上的运动粒子的动量,却不需要限制在真实的曲面上.如果一个曲线坐标系包含了超面族和超面上的法向矢量作为一个坐标轴的单位矢量,几何动量可以定义在超面族上,并参与构造对易力学量完全集.在三维各向同性谐振子中,采用球坐标描述,存在等效球面,并在球面族上建立对易力学量完全集.因此,三维各向同性谐振子同时具有动量和几何动量分布.这两个动量的差,可以定义为径向动量,从而使得径向动量可以测量.那么,通过几何动量,可以显示出狄拉克引进的径向动量的物理意义,而不是一直认为的那样完全不具有观测意义.

关 键 词:角动量  三维谐振子  几何动量
收稿时间:2018-09-03

Geometric momentum distribution for three-dimensional isotropic hormonic oscillator
Liu Quan-Hui,Zhang Meng-Nan,Xiao Shi-Fa,Xun Da-Mao.Geometric momentum distribution for three-dimensional isotropic hormonic oscillator[J].Acta Physica Sinica,2019,68(1):10301-010301.
Authors:Liu Quan-Hui  Zhang Meng-Nan  Xiao Shi-Fa  Xun Da-Mao
Institution:1. School for Theoretical Physics, Physics and Electronics, Hunan University, Changsha 410082, China;2. Department of Physics, Lingnan Normal University, Zhanjiang 524048, China;3. Faculty of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, China
Abstract:The geometric momentum was originally introduced for defining the momentum of particle constrained on a hypersurface, but it is in fact not necessarily defined on a curved surface only. If a coordinate system contains a family of hypersurfaces and a normal vector on hypersurface used as a unit vector, the geometric momentum can be defined on the family of hypersurfaces and can be used to determine a complete set of commuting observables. For instance, the spherical polar coordinate system is such a kind of coordinate, in which for a given value of radial position, the spherical surface is a hypersurface. It is well-known that any vector in the space can be decomposed into components along each axis of the spherical polar coordinates, but the geometric momentum has a different decomposition, for it requires a projection of the momentum on the hypersurface, and then needs to decompose the projection into the Cartesian coordinates of the original space where the whole spherical coordinates are defined. Explicitly, with a relation-i?▽=pΣ + pn where-i?▽ can be usual momentum operator in Cartesian coordinates, and pΣ is the momentum component on the hypersurface which turns out to be the geometric momentum, and pn is the momentum component along the radial direction, we have a nontrivial definition of radial momentum as pn ≡-i?▽-pΣ. Once-i?▽ and pΣ are measurable, pn is then indirectly measurable. The three-dimensional isotropic harmonic oscillator can be described in both the Cartesian and the spherical polar coordinates, whose quantum states thus can be examined in terms of both momentum and geometric momentum distributions. The distributions of the radial momentum are explicitly given for some states. The radial momentum operator that was introduced by Dirac has clear physical significance, in contrast to widely spreading belief that it is not measurable due to its non-self-adjoint.
Keywords:angular momentum  harmonic oscillator  geometric momentum
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号