首页 | 本学科首页   官方微博 | 高级检索  
     检索      

微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理
引用本文:张华,陈少平,龙洋,樊文浩,王文先,孟庆森.微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理[J].物理学报,2015,64(24):247302-247302.
作者姓名:张华  陈少平  龙洋  樊文浩  王文先  孟庆森
作者单位:1. 先进镁基材料山西省重点实验室, 太原 030024;2. 太原理工大学材料科学与工程学院, 太原 030024;3. 太原理工大学物理与光电工程学院, 太原 030024
基金项目:国家自然科学基金(批准号: 51101111, 51405328)、山西省高校青年学术带头人和山西省回国留学人员科研资助项目(批准号: 2012-031, 2012-033)资助的课题.
摘    要:德拜弛豫理论表明, 在频率为2.45 GHz的外加交变电磁场的作用下, 微波对极性分子的极化过程约为10-10 s, 因此利用微波固相反应可以在短时低温条件下制备出纳米粉体材料. 本文以MgH2代替Mg粉, 利用微波固相反应在低温下制备了Mg2Si0.4Sn0.6-yBiy (0 ≤y ≤q 0.03)固溶体, 并结合单带抛物线计算模型对其热电传输机理进行了分析. 研究结果表明: 利用该工艺可以有效抑制Mg的挥发和MgO 的生成, 在400 ℃保温15 min内即可完成MgH2与Si粉和Sn粉的固相反应, 获得片层间距为100 nm的超细化学计量比产物; 杂质Bi的引入可以有效增加载流子浓度, 并引起晶格畸变, 在晶格畸变和样品特有的纳米片层结构的协同作用下, 声子得到有效散射, 样品具有最低的热导率1.36 W·m-1·K-1. 较低的有效掺杂率和复杂的能带结构具有降低能带态密度有效质量和减小载流子弛豫时间的双刃效应, 使得本征激发提前, 在600 K样品取得最大ZT值为0.66.

关 键 词:微波  Mg2Si1-xSnx  单带抛物线模型  热电传输机理
收稿时间:2015-07-14

Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction
Zhang Hua,Chen Shao-Ping,Long Yang,Fan Wen-Hao,Wang Wen-Xian,Meng Qing-Sen.Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction[J].Acta Physica Sinica,2015,64(24):247302-247302.
Authors:Zhang Hua  Chen Shao-Ping  Long Yang  Fan Wen-Hao  Wang Wen-Xian  Meng Qing-Sen
Institution:1. Key Laboratory of Advanced Magnesium Based Materials of Shanxi Province, Taiyuan 030024, China;2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;3. College of Physics and Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:According to Debye relaxation, the polarization of electric dipole can be accomplished in 10-10 s under the action of an alternating electromagnetic filed with a frequency of 2.45 GHz, so it is feasible to obtain nano powder by carrying out solid reaction in microwave at low temperature in a short time. In this work, the syntheses of Mg2Si0.4Sn0.6-yBiy (0 ≤ y ≤ 0.03) solid solution thermoelectric materials are successfully achieved by microwave-assisted solid state reaction at low temperature with MgH2 serving as one reactant instead of Mg, and their transportation mechanisms are studied based on the SPB (single parabolic band) model as well. The results indicate that the volatilization and oxidation of Mg can be suppressed effectively in this process. Fine stoichiometric product can be achieved with nano-lamellar structure with an interlayer spacing of about 100 nm by carrying out the reaction between MgH2 and Si, Sn in microwave at 400℃ in 15 min. The introduction of Bi dopant can increase carrier concentration and lattice distortion. With the cooperation between the nano lamellar structure and lattice distortion, the phone is scattered so effectively that the sample owns a lowest thermal conductivity, κmin of 1.36 W·m-1·K-1 at 550 K based on the fact that the phonon scattering is dominant in the heat transfer process. The calculated results show that the theoretical κmin is 0.93 W·m-1·K-1, which is lower than 1.36 W·m-1·K-1. Therefore, by further adjusting the process parameters and increasing the effective doping rate of Bi and the density of the lattice defects, it is expected to obtain lower thermal conductivity. The band convergence is also verified by increasing the density-of-state effective mass. The apparent increase in m* is due to a gradual increase in carrier concentration with increasing temperature. Despite the agreement between the data and the model, the irregular behavior between m* and temperature is a very strong indication and the electric transmission performance of the sample is likely to be influenced by the structure of the multi band structure. Owing possibly to the low reaction temperature, there are Bi precipitates at the grain boundary. In addition to the phonon scattering and the alloy scattering, the Bi segregation and the scattering of carrier by nano-lamellar structure make the carrier mobility of the sample slightly lower. The lower effective doping rate and complex band structure make the carrier concentration and density-of-state effective mass low coupled with the low carrier mobility, which leads to low material factor β with a ZT of 0.66 at 600 K consequently.
Keywords:microwave  Mg2Si1-xSnx  single parabolic band model  thermoelectric transportation mechanism
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号