首页 | 本学科首页   官方微博 | 高级检索  
     检索      

半导体温差发电过程的模型分析与数值仿真
引用本文:王长宏,林涛,曾志环.半导体温差发电过程的模型分析与数值仿真[J].物理学报,2014,63(19):197201-197201.
作者姓名:王长宏  林涛  曾志环
作者单位:1. 广东工业大学材料与能源学院, 广州 510006;2. 国电中山燃气发电有限公司, 中山 528437
基金项目:国家自然科学基金青年科学基金(批准号:51306040)资助的课题~~
摘    要:本文提出一种新型的半导体温差发电模型,在温差发电过程的数值模拟中考虑了热电单元之间封闭腔体内空气传热的影响.同时进一步运用有限元的数值计算方法对不同电臂对数和不同型号温差发电模型的温度场、电压场进行了数值仿真计算,并对仿真结果进行分析.结果表明:采用127对热电单元模型计算的能量转换效率随冷热端温差增大而迅速提高,与采用1对热电单元模型计算的能量转换效率之差从冷热端温差为20℃的0.39%提高到冷热端温差为220℃时的5.16%,能量转换效率比1对热电单元平均高出3.02%.冷端温度恒定在30℃时,温差发电芯片的输出电压、功率以及能量转换效率均随着电偶臂的横截面积的增大而提高,且电偶臂冷热两端的温差越大提高幅度也越大,而温差发电芯片内阻则与电偶臂横截面积成反比关系,当温差为220℃时对应的输出功率最高达28.9 W.

关 键 词:温差发电  热电模型  数值仿真  转换效率
收稿时间:2014-04-22

Analysis and simulation of semiconductor thermo electric p ower generation pro cess
Wang Chang-Hong , Lin Tao , Zeng Zhi-Huan.Analysis and simulation of semiconductor thermo electric p ower generation pro cess[J].Acta Physica Sinica,2014,63(19):197201-197201.
Authors:Wang Chang-Hong  Lin Tao  Zeng Zhi-Huan
Institution:Wang Chang-Hong;Lin Tao;Zeng Zhi-Huan;Faculty of Materials and Energy, Guangdong University of Technology;State Power Generation Co., Ltd.;
Abstract:This paper presents an improved model of thermoelectric power generation, taking into consideration the effect of air heat transfer in a closed cavity between the thermoelectric couples. We have used the ANSYS software, under the condition of different numbers of thermoelectric couples and different models, to simulate numerically and analyze the temperature field and, the voltage field of thermoelectric power generation. Results show that the energy conversion efficiency of 127 pairs of thermoelectric couples increases rapidly as the temperature gradient between the hot and cold ends increases as compared with 1 pair of thermoelectric units; it is enhanced from 0.39% to 5.16% at an average of 3.02% while the temperature gradient varies from 20℃ to 220℃. The output voltage of the chip, power, and energy conversion efficiency would increase as the cross-sectional area increases while the cold junction temperature stays at 305℃, and the cold arm galvanic greater the temperature difference across the greater the increase rate, and thermoelectric power generation chip resistance, along with the cross-sectional area of the galvanic arm decreases. The output power can be up to 28.9W as the temperature difference is 220℃.
Keywords: thermoelectric generation thermoelectric model numerical simulation conversion efficiency
Keywords:thermoelectric generation  thermoelectric model  numerical simulation  conversion efficiency
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号