首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象
引用本文:卢超,陈伟,罗尹虹,丁李利,王勋,赵雯,郭晓强,李赛.纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象[J].物理学报,2020(8):188-196.
作者姓名:卢超  陈伟  罗尹虹  丁李利  王勋  赵雯  郭晓强  李赛
作者单位:清华大学工程物理系;西北核技术研究院;中国科学院国家空间科学中心
基金项目:国家自然科学基金重大项目(批准号:11690043)资助的课题.
摘    要:体硅鳍形场效应晶体管(FinFET)是晶体管尺寸缩小到30 nm以下应用最多的结构,其单粒子瞬态产生机理值得关注.利用脉冲激光单粒子效应模拟平台开展了栅长为30, 40, 60, 100 nm Fin FET器件的单粒子瞬态实验,研究FinFET器件单粒子瞬态电流脉冲波形随栅长变化情况;利用计算机辅助设计(technology computer-aided design, TCAD)软件仿真比较电流脉冲产生过程中器件内部电子浓度和电势变化,研究漏电流脉冲波形产生的物理机理.研究表明,不同栅长Fin FET器件瞬态电流脉冲尾部都存在明显的平台区,且平台区电流值随着栅长变短而增大;入射激光在器件沟道区下方体区产生高浓度电子将源漏导通产生导通电流,而源漏导通升高了体区电势,抑制体区高浓度电子扩散,使得导通状态维持时间长,形成平台区电流;尾部平台区由于持续时间长,收集电荷量大,会严重影响器件工作状态和性能.研究结论为纳米Fin FET器件抗辐射加固提供理论支撑.

关 键 词:单粒子瞬态  源漏导通  平台区电流

Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor
Lu Chao,Chen Wei,Luo Yin-Hong,Ding Li-Li,Wang Xun,Zhao Wen,Guo Xiao-Qiang,Li Sai.Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor[J].Acta Physica Sinica,2020(8):188-196.
Authors:Lu Chao  Chen Wei  Luo Yin-Hong  Ding Li-Li  Wang Xun  Zhao Wen  Guo Xiao-Qiang  Li Sai
Institution:(Key Laboratory of Particle and Radiation Imaging of Ministry of Education,Department of Engineering Physics,Tsinghua University,Beijing 100084,China;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect;Northwest Institute of Nuclear Technology,Xi’an 710024,China,National Space Science Center,Chinese Academy of Sciences,Beijing 101400,China)
Abstract:Fin field effect transistor(FinFET) is a most widely used structure when the field effect transistor is scaled down to 30 nm or less. And there are few studies on single-event transient of FinFET devices with gate length below 30 nm. The single-event-transient on FinFET with gate length below 30 nm is worth studying. The single-event-transient responses of bulk FinFETs with 30 nm, 40 nm, 60 nm and 100 nm gate length are examined by using the pulsed laser and technology computer-aided design(TCAD) simulation in this article.First, we use the pulsed laser to ionize the gate of the FinFET device and detect the transient drain current of the FinFET device. The experimental results show that there are obvious platforms for the transient drain current tails of FinFETs with different gate lengths, and the platform current increases as the gate length of FinFET becomes shorter. The charges collected in the platform of FinFET devices with gate lengths of 100, 60,40, and 30 nm are 34%, 40%, 51%, and 65% of the total charge collected in transient drain current, respectively.Therefore, when the FinFET device with the gate length below 100 nm, the platform current will seriously affect the device performance. Second, we use TCAD to simulate the heavy ion single-event effect of FinFET device and study the generation mechanism of platform region in transient drain current. The TCAD simulation explains this mechanism. Laser or heavy ions ionize high concentration electron-hole pairs in the device. The holes are quickly collected and the high concentration electrons are left under the FinFET channel. High concentration electrons conduct source and drain, generating the source-to-drain current at the tail of the transient drain current. Moreover the source-drain conduction enhances the electrostatic potential below the FinFET channel and suppresses high-concentration electron diffusion, making source-to-drain current decrease slowly and form the platform. The transient drain current tail has a long duration and a large quantity of collected charges, which seriously affects FinFET performance. This is a problem that needs studying in the single-event effect of FinFET device. It is also a problem difficult to solve when the FinFET devices are applied to spacecraft. And the generation mechanism of the transient drain current plateau region of FinFET device can provide theoretical guidance for solving these problems.
Keywords:single-event transient  source-drain conduction  platform current
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号