首页 | 本学科首页   官方微博 | 高级检索  
     检索      

探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性
引用本文:陈延彬,张帆,张伦勇,周健,张善涛,陈延峰.探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性[J].物理学报,2015,64(9):97502-097502.
作者姓名:陈延彬  张帆  张伦勇  周健  张善涛  陈延峰
作者单位:1. 南京大学微结构国家重点实验室, 南京大学物理学院, 南京 210093; 2. 南京大学微结构国家重点实验室, 南京大学材料科学与工程系, 南京 210093
基金项目:国家重点基础研究发展计划(批准号: 2015CB921203)和国家自然科学基金(批准号: 11374149, 51032003, 51472112, 10974083)资助的课题.
摘    要:基于纳米尺寸下复合铁电材料和反铁磁性材料是一个探索多铁性材料有效的方法. 利用激光脉冲沉积制备出LaFeO3-YMnO3人工超晶格和掺入不同层LaFeO3, BiFeO3的Bi4Ti3O12的外延薄膜. 通过系统的X射线衍射、透射电子显微术、扫描透射电子显微术下的能量损失谱表征证明这些样品具有原子尺寸上清晰的界面和完整的层状结构. 磁性测试证明这些材料具有亚铁磁性. 特别是在0.5和1.5LaFeO3-Bi4Ti3O12中的亚铁磁性甚至能保持到室温. 就铁电性而言, 铁电性测试显示出LaFeO3-YMnO3和插入BiFeO3的Bi4Ti3O12样品中存在较大的漏电流, 而在0.5LaFeO3-Bi4Ti3O12样品中存在铁电性. 因此在0.5LaFeO3-Bi4Ti3O12中能够实现亚铁磁和铁电共存. 其次发现当掺入多层的钙钛矿(3层SrTiO3或2.5层LaFeO3)后, Bi4Ti3O12 的层状结构将出现结构失稳现象. 这些工作对于利用纳米复合开发新颖多铁性提供一些实例.

关 键 词:多铁性材料  纳米复合多铁性  外延薄膜  微结构与物性的关系
收稿时间:2015-01-05

Exploring multiferroic materials based on artificial superlattice LaFeO3-YMnO3 and natural superlattice n-LaFeO3-Bi4Ti3O12 thin films
Chen Yan-Bin,Zhang Fan,Zhang Lun-Yong,Zhou Jian,Zhang Shan-Tao,Chen Yan-Feng.Exploring multiferroic materials based on artificial superlattice LaFeO3-YMnO3 and natural superlattice n-LaFeO3-Bi4Ti3O12 thin films[J].Acta Physica Sinica,2015,64(9):97502-097502.
Authors:Chen Yan-Bin  Zhang Fan  Zhang Lun-Yong  Zhou Jian  Zhang Shan-Tao  Chen Yan-Feng
Institution:1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2. National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract:Combining ferroelectric with antiferromagentic materials in nanometer scale is an effective method for exploring multiferroic materials. We preflent two kinds of systems to show the possibility of multiferroic properties in such nanometer composites. One is the artificial superlattice LaFeO3-YMnO3, and the other is the natural layered Aurivillius material Bi4Ti3O12 doped with different layers of LaFeO3, BiFeO3. Both materials were synthesized by pulsed laser deposition method on SrTiO3 substrates. Microstructural charterizations with XRD, TEM, and EELS in scanning transmission electron microscopy mode substantiate that the samples have atomically sharp interfaces between neighboring layers; this is important for producing possible magneto-electric coupling in multiferroic materials. Magnetic characterization proves that these materials have ferrimagnetic properties, in spite of their anti-ferromagnetic nature before coupling. Magnetic characterization also proves that there is 0.55-0.9 μB remanant magnetization generated at LaFeO3-YMnO3 interface. And the 0.5 and 1.5LaFeO3-Bi4Ti3O12 samples show ferrimagnetism which can remain even up to room temperature. Ferroelectric tests prove that there is a large leakage current in LaFeO3-YMnO3 superlattice and BiFeO3-inserted Bi4Ti3O12, but 0.5LaFeO3-Bi4Ti3O12 shows ferroelectric hysteresis loops. It can be therefore concluded that 0.5LaFeO3-Bi4Ti3O12 is a multiferroic material. If more perovskite layers (3-layer SrTiO3 or 2.5-layer LaFeO3) are inserted, the Aurivillius structure of Bi4Ti3O12 may appear structural instability that can be observed in our HRTEM measureflent. Our first principles calculations show that the degeneracy of formation enthalpies is the reason why the intergrowth in these materials forms and their structures are not stable. Our work may provide some examples for exploring new multiferroics by means of nano-meter composite.
Keywords:multiferroic materials  nanometer engineering multiferroics  epitaxial thin films  microstructure-property relationship
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号