首页 | 本学科首页   官方微博 | 高级检索  
     检索      

磁阱中超冷玻色气体临界行为的观测
引用本文:王兵,朱强,熊德智,吕宝龙.磁阱中超冷玻色气体临界行为的观测[J].物理学报,2016,65(11):110504-110504.
作者姓名:王兵  朱强  熊德智  吕宝龙
作者单位:1. 中国科学院武汉物理与数学研究所, 波谱与原子分子物理国家重点实验室, 武汉 430071; 2. 中国科学院武汉物理与数学研究所, 中国科学院原子频标重点实验室, 武汉 430071; 3. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金青年科学基金(批准号: 11104322)资助的课题.
摘    要:超冷玻色气体为研究量子临界现象提供了一个非常干净的实验系统. 弱相互作用下的三维玻色气体的临界行为与4He发生超流相变时的临界行为类似, 都属于三维XY型普适类. 从正常流体到超流的量子相变过程中, 系统会经历一个从无序相到长程有序相的转变; 而在相变点附近, 系统参量会表现出一些奇点的特征. 本文从实验上观测到了静磁阱中超冷87Rb玻色气体在凝聚体相变温度Tc附近的临界行为. 原子气体从静磁阱中释放, 经过30 ms的自由飞行后, 通过吸收成像得到原子气体的动量分布; 然后从中扣除热原子气体的动量分布, 提取出空间上处于临界区域内的原子气体动量分布, 并对不同温度下的动量分布半高宽进行统计. 统计结果显示: 在非常接近相变温度Tc时, 动量分布的半高宽突然减小, 表现出十分明显的奇点行为.

关 键 词:临界区域  临界行为  相变温度  动量分布半高宽
收稿时间:2016-02-28

Observation of critical behavior of ultra-cold Bose gas in a magnetic trap
Wang Bing,Zhu Qiang,Xiong De-Zhi,Lü,Bao-Long.Observation of critical behavior of ultra-cold Bose gas in a magnetic trap[J].Acta Physica Sinica,2016,65(11):110504-110504.
Authors:Wang Bing  Zhu Qiang  Xiong De-Zhi    Bao-Long
Institution:1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Quantum criticality emerges when the collective fluctuations of matter undergo a continuous phase transition at zero temperature and has been a research focus in conventional condensed-matter physics over the past several decades. In the quantum critical regime, the exotic and universal properties are expected. These properties are independent of the microscopic details of the system, but depend only on a few general properties of the system, such as its dimensionality and the symmetry of the order parameter. The research of quantum criticality can not only help us to understand quantum phase transitions, but also provide a novel route to new material design and discovery.Ultracold bosonic gases have provided a clean system for studying the quantum critical phenomena. The critical behavior of a weakly interacting three-dimensional (3D) Bose gas should be identical to that of 4He at the superfluid transition, which belongs to the 3D XY universality class. From the normal fluid to the superfluid, the system undergoes a phase transition from completely disorder to long-range order, while in the vicinity of the phase transition point, the system parameters will show some singularity characteristics. In this paper, we observe the critical behavior of 87Rb Bose gas in a quadrupole-Ioffe configuration (QUIC) trap near the phase transition temperature Tc. A novel singularity behavior of the full width at half maximum of momentum distribution (FWHMMD) of atomic gas is discovered in the experiment. Prior to our experiment, we prepare a sample with 7.8×105 87Rb atoms in the 5S1/2 |F=2, mF=2> state. Then the sample is held in a QUIC trap for a presetting period of time to control the temperature of atom sample precisely. During the holding time, the sample is heated up due to background gas collisions or fluctuations of the trap potential. In our experiment, the heating rate is deduced to be 0.348±0.078 nK/ms from the absorption image. For a bosonic gas in a harmonic trap, critical gas can only cover a finite-size region due to a spatially varying density. We define the finite-size region as a critical region determined by the Ginzburg criterion. Then the FWHMMDs of atomic gas in the critical region are measured for different temperatures near the critical point. To this aim, we first extract the momentum distribution of atomic gas from the absorption image of the atomic clouds released from the QIUC trap after free expansion. Thus momentum distribution of atomic gas in the critical region can be extracted from the absorption image by subtracting the momentum distribution of thermal gas outside the critical region. According to the statistical results of the FWHMMD at different temperatures, we find that the FWHMMD suddenly reduces, thus revealing a very notable singularity behavior when the temperature is very close to the phase transition temperature Tc.
Keywords:critical region  critical behavior  phase transition temperature  full width at half maximum of momentum distribution
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号